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ABSTRACT OF DISSERTATION

MONOCULAR POSE ESTIMATION AND SHAPE RECONSTRUCTION OF
QUASI-ARTICULATED OBJECTS WITH CONSUMER DEPTH CAMERA

Quasi-articulated objects, such as human beings, are among the most commonly seen ob-
jects in our daily lives. Extensive research have been dedicated to 3D shape reconstruction
and motion analysis for this type of objects for decades. A major motivation is their wide
applications, such as in entertainment, surveillance and health care. Most of existing stud-
ies relied on one or more regular video cameras. In recent years, commodity depth sensors
have become more and more widely available. The geometric measurements delivered by
the depth sensors provide significantly valuable information for these tasks. In this disserta-
tion, we propose three algorithms for monocular pose estimation and shape reconstruction
of quasi-articulated objects using a single commodity depth sensor. These three algorithms
achieve shape reconstruction with increasing levels of granularity and personalization. We
then further develop a method for highly detailed shape reconstruction based on our pose
estimation techniques.

Our first algorithm takes advantage of a motion database acquired with an active marker-
based motion capture system. This method combines pose detection through nearest neigh-
bor search with pose refinement via non-rigid point cloud registration. It is capable of ac-
commodating different body sizes and achieves more than twice higher accuracy compared
to a previous state of the art on a publicly available dataset.

The above algorithm performs frame by frame estimation and therefore is less prone
to tracking failure. Nonetheless, it does not guarantee temporal consistent of the both the
skeletal structure and the shape and could be problematic for some applications. To address
this problem, we develop a real-time model-based approach for quasi-articulated pose and
3D shape estimation based on Iterative Closest Point (ICP) principal with several novel
constraints that are critical for monocular scenario. In this algorithm, we further propose a
novel method for automatic body size estimation that enables its capability to accommodate
different subjects.

Due to the local search nature, the ICP-based method could be trapped to local minima
in the case of some complex and fast motions. To address this issue, we explore the poten-
tial of using statistical model for soft point correspondences association. Towards this end,
we propose a unified framework based on Gaussian Mixture Model for joint pose and shape
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estimation of quasi-articulated objects. This method achieves state-of-the-art performance
on various publicly available datasets.

Based on our pose estimation techniques, we then develop a novel framework that
achieves highly detailed shape reconstruction by only requiring the user to move naturally
in front of a single depth sensor. Our experiments demonstrate reconstructed shapes with
rich geometric details for various subjects with different apparels.

Last but not the least, we explore the applicability of our method on two real-world ap-
plications. First of all, we combine our ICP-base method with cloth simulation techniques
for Virtual Try-on. Our system delivers the first promising 3D-based virtual clothing sys-
tem. Secondly, we explore the possibility to extend our pose estimation algorithms to assist
physical therapist to identify their patients movement dysfunctions that are related to in-
juries. Our preliminary experiments have demonstrated promising results by comparison
with the gold standard active marker-based commercial system. Throughout the disserta-
tion, we develop various state-of-the-art algorithms for pose estimation and shape recon-
struction of quasi-articulated objects by leveraging the geometric information from depth
sensors. We also demonstrate their great potentials for different real-world applications.

KEYWORDS: Pose Estimation, Shape Reconstruction, Articulated Objects, Depth Sen-
sor, Non-rigid Registration

Author’s signature: Mao Ye

Date: December 17, 2014
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Chapter 1 Introduction

Qusi-articulated objects are one of the most general categories of objects in our daily lives.

One particular example would be human beings. Reconstruction and analysis of the motion

and shape of this category of objects have many applications in real life, such as in enter-

tainment, health care and surveillance. The research has achieved extraordinary advances

in recent years. However, the study, in particular on movements, has been going on for

more than 2000 years.

1.1 Historic Review

Human beings has a long history of interests in understanding and analyzing the move-

ments of animals and humans, dating back to the studies of gait of animals by the ancient

Greek philosopher Aristotle (384-322 B.C.E) [12]. For centuries, art has also been a sig-

nificantly important driving force that advanced the studies, as evidenced by the detailed

analysis of human anatomy by Leonardo da Vinci (1452-1519) [99]. The concept of

Kinamtic trees that has been and is still serving as a fundamental model to describe move-

ments of humans and animals could be found in his sketchbooks. Later on, the scientist

Giovanni Alfonso Borelli (1608-1679), often called “the father of biomechanics”, applied

the analytical and geometrical methods, developed by Galileo Galilei (1564-1642) in the

field of mechanics to provide quantitative measurements [22]. The invention of chronopho-

tography at the later half of 19th century brought a new way to analyze motions. A major

contribution was the collaborated research on physics, human anatomy and locomotion
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by brothers Ernst Heinrich Weber (1795-1878), Wilhelm Eduard Weber (1804-1891), and

Eduard Friedrich Weber (1806-1871) [127] . Other famous work built upon chronopho-

tography include those by the French astronomer Pierre Janssen (1824-1907), the French

scientist Etienne-Jules Marey (1830-1904), the British-born Eadweard Muybridge (1830-

1904) and Albert Londe (1858-1917). With the development of computer technologies in

20th century, the research on motion analysis and biomechanis stepped into a new era, in

particular in marker-based pose tracking with its origin in the work by G. Johannsson [67].

Since then, human movement has been actively studied in Biomechanis, Computer Graph-

ics and Computer Vision. A majority of recent research focuses on marker-less motion

capture and extraordinary achievements have been made. A more detailed historic review

can be found in [99]. With the computational power dramatically boosted in the past two

decades, digitized modeling of human shapes has also attracted great attentions of the sci-

entists and extensive research has also been conducted [30].

1.2 Motivation

Traditionally, most computer vision techniques operate on 2D images or videos for motion

and shape capture [30, 84]. Great successes have been achieved with multi-camera sys-

tems [15, 16, 38, 51, 81, 105, 109]. Most of these techniques rely on prior models that

are either hand designed or created with 3D scanner, for exmple based on Structured

Light [74]. Most of the time, the 3D scanners can only capture a partial view of the subject

at a time. Therefore, extensive research in the areas of Computer Graphics and Geomet-

ric Modeling has been conducted on building a complete model out of a set of partial

scans [20,28,36,78,91,123]. Despite of the high level of details provided, the 3D scanners

2



www.manaraa.com

can only capture static scenes and is not able to cope with motions. The emergence of real-

time range sensors, such as SwissRanger [3], PMD [6] and Microsoft Kinect [4], provide

a new opportunity. Specifically, depth cues provided by these sensors overcome several

major difficulty in 2D measurements, such as ambiguity due to perspective projection and

sensitivity to lighting conditions. Although with lower resolution, it has the advantage of

real-time dense geometric measurement over traditional 3D scanners. On the other hand,

it provides the possibility to combine knowledge in these two areas to develop new algo-

rithms taylored for depth sensors. Besides, the availability of such devices is increasing

rapidly in our daily lives, as they are becoming more and more affordable, such as the

Microsoft Kinect sensor [4].

The research presented in this dissertation embraces the new opportunity and explores

the potential to use commodity depth sensors for motion and shape estimation of quasi-

articulated objects, which is one of the most commonly seen object categories in our daily

lives. More specifically, our research is motivated mainly by the following thoughts.

1. Although the commercial marker-bases systems, such as Vicon [8], has delivered

highly accurate measurements, the attachment of markers suffers from several limi-

tations. First of all, markers and the specific suits required can significantly alter the

pattern of locomotions [43]. Secondly, it is time consuming to setup the markers and

to process the recorded data that is sometimes necessary. My research thus focuses

on marker-less motion capture that allows nature movements.

2. Existing techniques, especially those with surrounding cameras, are mostly appli-

cable only in laboratory environments [38, 51, 121]. Techniques that can operate in
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people’s home environments are desired. Therefore, my research is focused on the

scenario of a monocular setup.

3. Algorithms that directly operate on 3D data have been well studied in related fields,

such as Computer Graphics and Geometry Processing. However they usually deal

with data of substantially higher quality than those provided by current depth sen-

sors. It has been observed that directly applying these techniques could be problem-

atic [34]. Consequently, our techniques are taylored for relatively low quality data

provided by commodity depth sensors.

4. Techniques for scanning general static objects are available and are still being ac-

tively studied. One could use a hand-held camera [91] or body scanner (e.g., Cy-

berware body scanner [2]). However our experience shows that it is tedious and

error-prone to fully scan an object with a hand-held camera using the state-of-art

technique [91]. And a body scanner can only scan static objects. More critically, it is

unnatural and usually impractical for human or animals to remain completely static

during the acquisition process. Driven by these thoughts, my research aims mainly

at dynamic scenes.

Despite all the benefits brought by the depth sensors, there are several challenges that

need to be addressed. Similar to video cameras, a depth sensor captures only a partial

view at a time. Consequently, there is at least 50% data missing in each observation.

The occlusion still introduces substantial ambiguity for motion and shape estimation. The

huge high dimensional space of human poses further increases the difficulty. Besides,

existing depth cameras generally suffer from various degrees of noises, as well as low
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resolution, compared to high quality body scanners. It poses significant challenges for

shape reconstruction, especially if rich geometric details are desired.

1.3 Contributions

In this dissertation, we propose three algorithms for monocular pose estimation and shape

reconstruction of articulated objects using a single commodity depth sensor. These three

algorithms achieve shape reconstruction with increasing levels of granularity and person-

alization. We then further develop a method for highly detailed shape reconstruction based

on our pose estimation techniques.

The first algorithm we develop overcomes the challenges caused by occlusions and

high dimensionality by utilizing a motion database and statistical dimensionality reduction

techniques [133]. The motion data is acquired with an active marker-based motion capture

system, namely Vicon [8]. Dimensionality reduction techniques is then applied to built a

subspace where nearest neighbor search is performed to identify a most similar exemplar in

our data for an input depth map. Through non-rigid point cloud registration, we reconstruct

the missing data due to occlusions from which the pose can be reconstructed. The algorithm

is capable of accommodating different body sizes and achieves more than twice higher

accuracy compared to a previous state of the art on a publicly available dataset [52].

Performed in a frame by frame fashion, the above algorithm is more robust then tem-

poral tracking. Nonetheless, it does not guarantee temporal consistency of the both the

skeletal structure and the shape. It could be problematic in scenarios where consistency

is desired or even critical, such as in health care applications. To address this problem,

we develop a real-time model-based approach for pose and 3D shape estimation based on
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Iterative Closest Point (ICP) principal with several novel constraints that are critical for

monocular setup [132]. To achieve personalization, we propose a novel method for auto-

matic body size estimation that enables its capability to accommodate different subjects.

Despite the good performance of the ICP-based technique, its local search strategy

could lead to a local solution in the case of some complex and fast motions. To address

this issue, we use statistical model for soft point correspondences association and develop a

probabilistic framework for real-time simultaneous pose and shape estimation [134]. This

method achieves state-of-the-art performance on various publicly available datasets [52,53,

62]. Experiments demonstrate that the proposed method can better accommodate complex

and fast motions compared to previous works. Moreover, we show that this technique can

be used to register across a set of shape collections where no correspondences are known

beforehand. It will then enable statistical shape analysis or automatic rigging for animation

purpose.

All the above algorithms focus more on the motion estimation and have limited capabil-

ity for shape estimation. An overall shape without rich geometric details can be estimated

by fitting a database exemplar [133] or by adapting a generic template [132, 134]. In or-

der to deliver personalized detailed models, we then develop a novel framework on top of

our pose estimation techniques [134] that achieves highly detailed shape reconstruction. It

allows the user to move naturally in front of the cameras, as opposed to the static settings

in other previous work [78]. Our experiments demonstrate reconstructed shapes with rich

geometric details for various subjects with different apparels.

Last but not the least, we demonstrate the effectiveness of our techniques in two differ-

ent applications: Virtual Try-On and Smart Health. For this first application, we combine
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our ICP-based pose and shape estimation techniques with cloth simulation to deliver the

first promising 3D-based virtual clothing system [132]. In the Smarth Health applica-

tion, we explore the possibility to extend our pose estimation algorithms to assist physical

therapist to identify their patients movement dysfunctions that are related to injuries. Our

preliminary experiments have demonstrated promising results by comparison with the gold

standard active marker-based commercial system [103].

1.4 Structure

The reminder of this dissertation is structured as follows. Chapter 2 provides discussion

of existing works mainly on pose and shape estimation using depth information. Some of

those techniques are developed concurrently with ours presented in this dissertation. Our

data-driven approach is detailed in Chapter 4. Since it utilized a motion database cap-

tured with Vicon [8], we first discuss the procedure to build this database. The algorithm

that combines pose detection and pose refinement is then presented. The performance is

quantitatively evaluated on a publicly available dataset [52]. In Chapter 5, we move to the

model-based approach under the Iterative Closest Point (ICP) framework. The effective-

ness of this technique is demonstrated through the Virtual Try-On application discussed in

Section 8.1 in Chapter 8. Our development of the model-base algorithm with probabilis-

tic correspondence association is presented in Chapter 6. Extensive experiments are con-

ducted to demonstrate the performance both quantitatively and qualitatively. The details

of our novel system for detailed shape reconstruction is provided in Chapter 7. Experi-

mental results on various subjects are presented to show the quality of our reconstruction.

The two applications on Virtual Try-On and Smart Health are described in Section 8.1 and

7



www.manaraa.com

Section 8.2 of Chapter 8 respectively. Chapter 9 concludes with outlook of several future

research possibilities.
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Chapter 2 Related Work

2.1 Marker-less Motion Capture

Human motion capture has been a highly active research area in computer vision and graph-

ics, due in part to its many applications. Such applications span fields as diverse as security

surveillance, medical diagnostics, games, movies and sports. Traditional marker-based

motion capture systems provide a feasible solution, however such systems carry the bur-

den of specially designed equipment or suits, which is inconvenient for many practical

applications. Therefore, non-invasive marker-less approaches are the main focus of re-

search in recent years. There has been several detailed surveys in this topic using color

inputs [46, 83, 84, 96, 99] or depth inputs [63]. Generally, methods for marker-less motion

capture can be categorized into three groups, namely generative approaches, discriminative

approaches and hybrid approaches. Generative approaches normally fit a template, either

parametric or non-parametric, to the observed data through optimization or filtering [49].

By contrast, discriminative approaches attempt to learn a mapping between the observa-

tions, e.g. the image or features extracted, and the target pose. Then the pose of the given

image(s) is estimated based on the learned mapping function. Hybrid approaches combines

the complementary characteristics of both categories of approaches. A common way is to

use discriminative component for initialization and then use the generative component to

refine the pose through model fitting. In the following, based on this categorization, meth-

ods based on color inputs are briefly reviewed and depth-based approaches are discussed
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in more details.

2.1.1 Color-based Methods

From color inputs, popular cues used for motion capture include color, texture, silhouettes,

edges and motions [49]. In general, multiple cues are considered and integrated together

to achieve good performance. Techniques have been develop to estimate human pose from

monocular image or video data in generative [23,107,119], discriminative [106,120] or hy-

brid fashio [47, 101]. “However, they are not always robust, in part because image data is

inherently noisy and in part because it is inherently ambiguous” [85,95]. Using surround-

ing camera setup, the issue can be dramatically mitigated and impressive results have been

achieved [16,38,39,110,121]. Most of these approaches rely on a generic [110] or person-

alized [16, 38, 39, 121] model as a prior and perform both pose estimation in a generative

fashion. Normally the shape of the prior model is adapted to the subject in the process, in

particular in the setting of performance capture [38, 121]. Although substantial improve-

ments have been made on the accuracy and robustness of techniques using color inputs,

the inherent pose ambiguity and appearance diversity still pose significant challenges. In

recent years, the emergence of commodity range sensors drives the community to develop

methodologies that can effectively utilize the depth information.

2.1.2 Depth-based Methods

Discriminative Approaches

Existing discriminative approaches based on depth information either perform body part

detection by identifying salient points of the human body [94, 138], or rely on classifiers
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or regression machines trained offline to infer the joint locations [55,104,116]. Plagemann

et al. [94] detects geodesic extrema on surface meshes generated from depth images. The

assumption is that these extrema normally coincide with salient points on the human body.

These extrema are then classified into different body parts using local shape descriptors

centered from normalized de;th images at these extrema. Zhu et al. [138] detects a set of

key features points from depth images that represent positions of anatomical landmarks,

and track them over time based on a probabilistic inferencing algorithm. These key-points

are then kinematically self retargeted to estimate the pose of the person.

Shotton et al. [104] uses an extensive amount of synthetic data (≥ 300K) to train a Ran-

dom Forest classifier for body part segmentation from a single depth image using simple

pair-wise depth features.The joint locations are subsequently estimated using mean shift

algorithm. This algorithm serves as the foundation of the great commercial success of the

Microsoft Kinect [4] and is considered as a breakthrough. Also based on Random Forest,

Hough forests to be specific), Girhick et al. [55] by voting from each raw depth pixel on

multiple joint locations. Outliers are then removed and density estimation is applied to infer

the locations of both the visible and occluded joints. Both of these two algorithms are very

efficient during prediction and runs at real time. Taylor et al. [116] directly infers corre-

spondences between depth images and a parametrized human model. Offline optimization

is then performed for pose estimation.

Discriminative approaches show impressive performance both in terms of efficiency

and robustness to the diversity of poses. However, a major limitation is the lack of temporal

consistency and stability in the estimation results as normally these approaches operates in

a frame-by-frame fashion. As mentioned in Section 1.3, these characteristics are desired
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in some scenarios. Moreover, discriminative approaches are mostly learning based and

its accuracy is generally lower than generative approaches and might not be sufficient for

applications such as in medical area. Last but not the least, normally a large amount of

training data is required which might not be available for objects other than human, such

as animals.

Generative Approaches

The generative approaches fit a template, either parametric or non-parametric, to the ob-

served data, mostly with variants of ICP. Pekelny et al. [92] presents one of the first ap-

proaches for pose and surface estimation of articulated rigid objects from ToF depth im-

ages. They assume an initial segmentation on the first frame is given, along with the knowl-

edge of underlying kinematic structure. Hierarchical ICP is used to align an accumulated

model, which originally is the first frame, to a new depth frame to aggregate more obser-

vations. The approach runs at around 0.5 frames per second. Knoop et al. [72] propose a

fusion framework that combines 2D and 3D input to construct correspondences that used

in ICP for pose estimation. The approach is specifically designed for human body and

cannot well accommodate occlusions. Bleiweiss et al. [21] also relies on hierarchical ICP

to fit a model to the observation and then use the estimated pose to drive a virtual avatar.

Fribog et al. [48] move the computationally expensive local optimization to the GPU for

speedup. A major limitation of the ICP-based methods are the sensitivity to local minima.

To remedy the problem, Ganapathi et al. [53] introduces free space constraint into their

Dynamic Bayesian Network (DBN) that models the motion states. Good performance has

been demonstrated with this approach. Yet their over-simplified cylindrical template can-
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not capture the subject’s shape and only allow a limited capability for shape adaptation.

Ye et al. [131] reduces the ambiguity caused by occlusion by using multiple depth sensors.

High resolution pre-scanned body models are fitted to the mult-view observations for pose

estimation.

Although prior models are generally used in generative approaches, the exponential

combinations of joint configurations lead to an extremely large pose space where global

search is generally computationally prohibited. Therefore, most existing approaches rely

on local optimization which, however, is sensitive to local minima. In our first model-

based algorithm [132] (Chapter 5), we propose several novel constraints that are critical for

monocular data to guide the local optimization. A more advance solution is our algorithm

based on probabilistic correspondence association [134] (Chapter 6) that is more capable

of avoiding local minima.

Hybrid Approaches

The complementary characteristics of these two sets of approaches have been combined

to achieve higher accuracy. Similar to our data-driven approach [133], Baak et al. [13]

also relies on a database to identify a exemplar with similar pose and subsequently refine

the pose. Instead of using PCA, they adopt the idea similar to [94] that extracts features

corresponding to salient points for database lookup. Specifically, they stack the first five

geodesic extrema as the index that is used to locate the most similar pose in a database con-

sisting of 50K poses. ICP is then used to align the database exemplar to the input to refine

the pose. Lately, Helten et al. [62] extended this algorithm to obtain personalized tracker

that can handle larger body shape variations and achieves real-time performance. However
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in order to deal with the missing data in monocular setup, they rely on visibility test to se-

lect candidate points for correspondences construction, and therefore could not effectively

handle body rotations. Ganapathi et al. [52] adopts the body part detector proposed by

Plagemann et al. [94] to guide their generative tracker within a Dynamic Baysian Network

(DBN). By combining this DBN framework with the discriminative classifier developed

by Shotton et al [104], Wei et al. [128] present a system that achieves high accuracy and

real-time performance. Specifically, they use the generative component for tracking and

trigger the discriminative component when tracking failure is detected for reinitialization.

2.1.3 Template Adaptation

During pose tracking, especially in the case of generative tracker, the consistency body

shapes between the template and the subject plays an important role. Therefore, in most

of the approaches that involve a mesh model, surface estimation couples with or follows

the pose estimation, in order to capture the surface geometry of the subject. One option

is to use pre-scanned personalized models [16, 38, 51, 121]. The scans can be captured

with one [129] or multiple depth sensors [117]. The requirement of personalized mesh

models is normally fulfilled with high precision 3D scanners and consequently limits the

methods’ applicability. Another options is to adapt the template either using dedicated

frames [62,128] or along the tracking process [53,110]. Our approaches [132,134] fall into

the second category and are developed concurrently with the alternatives [53,62,110,128].

Our approach requires no parametric shape models needed in [62], no training database for

discriminative pose estimation as in [128] and allows larger flexibility for shape adaptation

compared to [53,110]. A shared limitation of the second class of methods compared to the
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performance capture settings [38, 121] is the lack of rich geometric details in the adapted

template. Normally detailed personalized shape model are constructed with another line of

techniques mostly developed in Computer Graphics and Geometry Processing.

2.2 Shape Reconstruction

The topic of shape reconstruction has also been extensively studied, however mainly for

rigid bodies [26, 78]. Some methods can deal with small degree of motions for articulated

objects [34, 129, 136]. Only a few methods allow the subject to perform free movements.

Using multi-view setup, detailed geometry can be recovered [38,76,110,121]. High quality

monocular scans of strictly articulated objects under different poses can also be accurately

merged to obtain a complete shape [28]. In the following, closely related methods are

classified into model-based and model-free approaches and briefly discussed.

2.2.1 Model-based Approaches

Statistical shape models have been widely used as the prior information for shape recon-

struction. In particular, SCAPE model [11] has been successfully used for human body

modeling both from color images [57] and from range maps [62, 129]. Several extensions

of the SCAPE model have also been proposed [29, 65]. Weiss et al. [129] captures depth

maps of a subject from four different views using a Microsoft Kinect and adapts the SCAPE

model according to both depth and silhouette information. The subject is required to remain

almost static or perform known poses across four scans. A common limitation of paramet-

ric model is the limited capability of extrapolation. For example, the SCAPE model does

not capture the geometric information of the subject’s apparel and therefore is not appropri-
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ate for general purpose scanning. To overcome the limitation, Tong and colleagues [117]

adopts the statistical shape model developed in [58] to only estimate the shape of the sub-

ject and build a common deformation graph. The model is then built through pair-wise

registration using the deformation graph based on Embedded Deformation Model [113],

followed by global alignment with loop closure. They use three Kinect sensors to scan the

subject holding still on a turntable and rely on color feature tracking to localize control

points for pair-wise registration.

Non-parametric models generally come in the form of a pre-scanned personalized model

or a generic mesh model. When a personalized model is used, the purpose is normally

to capture the deformation details from high quality input, such as the performance cap-

ture [38,75,121], rather than reconstructing a 3D model. Straka et al [110] adapts a generic

human template model to the visual hull of multi-view images where the subject’s body

poses are known. Our detailed shape reconstruction approach (Chapter 7) also uses a

generic non-parametric template model, however requires only a single depth sensor.

2.2.2 Model-free Approaches

Extensive research have been conducted for general 3D reconstruction and various tech-

niques have been developed, such as stereo, structure from model, structured light scanning

and shape from X [114]. Some recent studies use same input as ours, namely range scans,

to reconstruct complete 3D models of static scenes as well as deformable objects.

For static scenes, KinectFusion [91] can be used for effective real-time scanning using

a single Kinect sensor. The technique developed by Cui et al. [35] can operate on low res-

olution Time-of-Flight sensor. However, neither method could easily generalize to scenes
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even with small movements, which is normally the case when scanning a live subject. To

solve this issue, several authors [78,117,136] propose to perform non-rigid alignment based

on the Embedded Deformation Model [113] to accommodate potential small movements.

Zeng et al. [136] place two sensors facing each other to capture both the frontal and the

back of the subject and incrementally integrate the scanned depth maps with implicit loop

closure. Li and colleagues [78] take advantage of the built-in motor of Microsoft Kinect

for close range yet full body scanning while the subject orientCui et al. [34] relax the as-

sumption to limited articulated motions. Chang and colleagues [28] develop a method that

works with full articulated motions. They rely on SpinImages [68] for pair-wise registra-

tion [27] and then perform a global alignment to merge all meshes. Although their results

are promising on high quality (partial) scans, this method is sensitive to the noises from

commodity depth sensors as reported in [34].
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Chapter 3 Preliminaries: Shape and Pose Representations

Throughout our work, we represent the geometry of a 3D shape as a 3D meshM =
{
V,F

}
.

It consists of the surface vertices V = {vm|m = 1,2, · · · ,M} and the surface topology (con-

nectivities) F =
{
(i, j,k) |for some 1 ≤ i, j,k ≤ M

}
with each element being a triplet (i, j,k)

that defines a triangular patch in our case. How the geometry evolves as the object per-

forms certain movements is dependent on the deformation models adopted to approximate

the nature of the object. If an object is completely rigid, it moves according to some rigid

body transformation as one piece. In our settings, the targets are the quasi-articualted ob-

jects which undergo articulated motions globally and small non-rigid motions locally. In

the remainder of this section, we describe the models we use in this dissertations to model

quasi-articulated objects.

3.1 Articulated Deformation Model

The assumption of articulated structure implies certain hierarchy across different compo-

nents of the object. An articulated motion is normally described with a kinematic tree and

computed via forward kinematics.

Figure. 3.1 illustrates a simple scenario of two segments. In this case, there are two

joints, one root joint with six degrees of freedoms and another with one degree of freedom

(called revolute joints [87]). A local coordinate system can be defined on each of the

joints. Without loss of generality, we assume the local coordinate system of the root joint

coincides with the global (world) coordinate system (an additional rigid transformation
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Root Joint

v0
b

v0
a

Figure 3.1: Illustration of articulated motion of an articulated object with two segments.
Image adapted from [87]. See the text for explanation.

can be applied at the end if this does not hold). Assume the root undergoes a rigid body

transformation Gg and the other joint rotates around the local axis for a certain degree that

results in a transformation matrix Gb. The transformation Gb actually involves three parts,

namely transformation from the world coordinate system to the local coordinate system,

the rotation matrix around local coordinates system and then transformation from the local

coordinate system to the world coordinate system. With these motions, the surface vertex

va on segment A and vb on segment B will move in the following way:

va = Gg · v0
a (3.1)

vb = Gg ·Gb · v0
b (3.2)

where v0
a and v0

b are the positions in some default configuration. If the object contains more

than two segments, the hierarchy is normally in a tree shape. Similar to Equation 3.2, the

transformations of a node is the product of its own transformation with all its parents and
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Figure 3.2: A typical hierarchical representation of human body [14].

can be represented as:

Ti = Tg

K∏
k=1

(Gk)δki (3.3)

where δki =
{ 1 joint k is an ancestor of joint i

0 otherwise (3.4)

where Tg is the global transformation, i.e. transformation of the root, Gk is the local trans-

formation and Ti is the accumulated transformation.

For human body, a typical hierarchical representation is illustrated in Figure 3.2. The

forward kinematic follows Equation 3.3. Therefore a surface vertex deforms according to

the following equation:

vm = Tb(m) · v0
m b(m) ∈ [1,K] (3.5)

where v0
m is the vertex position in some reference pose and K is the number of bones. The

function b(·) maps a vertex index to the index of the bone directly controlling this vertex.

Equation 3.5 represents the shape deformation with a pose under the articulated deforma-
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𝝃𝟏 

𝝃𝟑 =
𝝎

−𝝎× 𝒑  

𝝃𝟐 

World 
coordinate 

𝒑 

(a) The template mesh and skeleton (b) The twists defining local transformations for 
the joint circled in (a) 

Figure 3.3: Our template model consisting of the mesh and the underlying skeleton (kine-
matic structure). A rigid body transformation is represented via a twist ξ. The vector ω is
the orientation of the rotation axis corresponding to ξ.

tion model. The underlying kinematic tree essentially describes the skeleton structure. The

template we use throughout this dissertation is shown in Figure 3.3.

3.2 Linear Blend Skinning

Due to the local non-articulated deformation of human body, the Linear Blend Skinning

(LBS) deformation model [93] is widely used to better encode this behavior. This model

is used throughout this dissertation due to its simplicity and effectiveness. With LBS, a

surface vertex is influenced not only by a single bone, but potentially multiple bones. The

degree of influences are encoded in the so-called skinning weights, which we denote asA={
αm,k

∣∣∣∑K
k=1αm,k = 1;m = 1, · · · ,M;k = 1, · · · ,K

}
. A vertex is then transformed by a linear

combination of the transformations of all the bones weighted by the skinning weights.

vm =
( K∑

i=1

αm,iTi
)
v0

m (3.6)
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Substitute Ti in the above equation with Equation 3.3, we get

vm =
(
Tg

K∑
i=1

αm,i

K∏
k=1

(Gk)δki
)
v0

m (3.7)

3.3 Twist-Based Representation

A rigid body transformation T can be represented in various ways, e.g. through euler

angles, quaternions, etc. In this dissertation, we represent a 3D transformation T via an

exponential map, similar to [23, 51]:

G = eξ̂θ =

∞∑
k=0

ξ̂k

k!
(3.8)

Here ξ̂ is the 4× 4 matrix form of the twist ξ (a six dimensional vector representing the

location and orientation of the rotation axis), while θ is the angle of rotation around ξ. An

example is shown in Figure 3.3. The advantage of this representation is its simplicity in

linearizing the transformation with respect to the rotation angle θ, which leads to linear op-

timization for pose tracking. Details about this representation can be found in the excellent

book by Murray et al. [87] or in [23].

Given the template model (Figure 3.3) in a reference pose, the set of rotation axes are

pre-defined, represented as the set of twists Ξ = {ξk|k = 1, · · · ,K}. Therefore, a pose (Θ) of

the model is defined by the set of joint angles {θk|k = 1, · · · ,K} corresponding to each of the

twists, as well as the global transformation ξg. In practice, one joint might have more than

one degree of freedoms, therefore is related to more than one joint twists and angles. For

simplicity, we can treat each < ξi, θi > as a joint. Without lost of generality, we assume the

indexes of parent nodes in the kinematic tree are smaller than those of their children.
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With this representation, we can represent the global transformation Tg and the trans-

formations of all bones {Ti} as:

Tg = eξ̂g (3.9)

Gk = eξ̂kθk (3.10)

Consequently, the transformation in Equation 3.3 can be written as

Ti = eξ̂g

K∏
k=1

eδkiξ̂kθk (3.11)

And the deformation according to LBS defined in Equation 3.7 can be expressed as:

vm(Θ) = eξ̂g

K∑
i=1

(
αm,i

K∏
k=1

eδkiξ̂kθk
)
v0

m (3.12)

Where Θ =
[
ξg, θ1, · · · , θK

]T defines the global and local motion and is the body pose which

is then the target for pose estimation. Note that in this dissertation, for notation simplicity,

the vector v could represent a homogeneous or an inhomogeneous coordinate, whichever

is appropriate depending on the context.

3.4 Incremental Pose Update

For continuous movements, we can assume the pose change is small and continuous be-

tween two time instances. With this assumption, we can derive how the surface vertices

evolve with respect to previous states and the incremental pose update. At this point, we

will take advantage of the linearization of exponential map as mentioned earlier.

Denote the pose of time t as Θt =
[
ξt

g, θ
t
1, · · · , θ

t
K
]T and the corresponding surface vertices

as
{
vm(Θt)|m = 1, · · · ,M

}
. The small pose changes between time t and t + 1, denoted as
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∆Θ =
[
∆ξt

g,∆θ1, · · · ,∆θK
]T , can be defined as the follows:

eξ̂
t+1
g = e

ˆ∆ξt
geξ̂

t
g (3.13)

θt+1 = θt +∆θt. (3.14)

We can then use the first-order approximation to linearize the infinite sum in Equation 3.8

to obtain:

e
ˆ∆ξt

g ≈ (I + ˆ∆ξt
g) (3.15)

eξ̂kθ
t+1
k ≈ eξ̂kθ

t
k(I +∆θt

kξ̂k) (3.16)

where I is the 4×4 identity matrix. Substitute these two equations into Equation 3.11, the

transformations of a bone i at time t + 1 can be expressed as.

T t+1
i ≈ (I + ˆ∆ξt

g)eξ̂
t
g

K∏
k=1

eδkiξ̂kθ
t
k(I +δki∆θ

t
kξ̂k) (3.17)

Expand this product and ignore terms with product of at least two angular changes, i.e.

∆θt
j∆θ

t
k, we then get

T t+1
i ≈ (I + ˆ∆ξt

g)eξ̂
t
g

[ K∏
k=1

eδkiξ̂kθ
t
k +

K∑
k=1

δki
( k∏

j=1

eδ jk ξ̂ jθ
t
j ξ̂k∆θ

t
k

K∏
j=k+1

eδ jiξ̂ jθ
t
j
)]

(3.18)

With our assumption that the index of parent joints is smaller than their children for nota-

tion, we can define two transformation matrix Mt
b and T t

b as

Mt
i =

K∏
k=1

eδkiξ̂kθ
t
k =

i∏
k=1

eξ̂kθ
t
k (3.19)

T t
i = eδkiξ̂

t
g Mt

i (3.20)
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Therefore Equation 3.18 becomes

T t+1
i ≈ (I + ˆ∆ξt

g)eξ̂
t
g
[
Mt

i +

K∑
k=1

δkiMt
kξ̂k(Mt

k)−1Mt
i∆θ

t
k

]
= (I + ˆ∆ξt

g)
[
T t

i +

K∑
k=1

(
δkiT t

kξ̂k(Mt
k)−1(eξ̂

t
g)−1eξ̂

t
g Mt

i∆θ
t
k

)]
= (I + ˆ∆ξt

g)
[
T t

i +

K∑
k=1

(
δkiT t

kξ̂k(T t
k)−1T t

i ∆θ
t
k

)]
(3.21)

Substitute the above equation into Equation 3.6, we can derive the relationship between

surface vertices update and the pose update under LBS as follows.

vm(Θt+1) =

K∑
i=1

αm,i(I + ˆ∆ξt
g)
[
T t

i v
0
m +

K∑
k=1

(
δkiT t

kξ̂k(T t
k)−1T t

i v
0
m∆θt

k

)]
(3.22)

Define

ξ̂′
t
k = T t

kξ̂k(T t
k)−1 (3.23)

Further expand Equation 3.22 and ignore the higher order term, we get

vm(Θt+1) ≈ vm(Θt) + ˆ∆ξt
gvm(Θt) +

K∑
i=1

αmi

K∑
k=1

δkiξ̂′
t
kvm(Θt)∆θt

k

= vm(Θt) + It
m∆ξ

t
g +

K∑
i=1

βk,iξ̂′
t
kvm(Θt)∆θt

k (3.24)

where

It
m =

[
I3×3 [vm(Θt)]×

]
(3.25)

βm,i =

K∑
k=1

δikαm,k (3.26)

and the operator [·]× converts a vector to a skew-symmetric matrix. Here the weight βi,k ∈

[0,1] reflects the influence of the joint k on the vertex i, by accumulating skinning weights

from all the children of joint k in the kinematic tree.

Equation 3.24 defines the relationship between incremental pose update and surface

update and will be used later for pose estimation.
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Chapter 4 Data Driven Human Pose Estimation

In this chapter, we present a data-driven approach for accurate human pose estimation from

depth images. In this work, we use the SwissRanger ToF sensor [3]. Our algorithm use

a pre-captured motion database to constrain the possible body configuration space. The

motion database contains both body surface models and corresponding skeleton body con-

figurations. When an input depth map is matched with a body surface model, it obtains not

only the semantic labeling from the surface model, but also the underlying body configura-

tion. We then further optimize the body configuration using a non-rigid point registration

process. It serves two purposes: first to account for the difference between the sample

surface model; and second to fill in the missing regions that are occluded in the input. In

this two-stage process, we avoid the typical problem of a huge motion database associated

with directly mapping input data to body configuration, while we also provide good initial

estimation so that optimization-based refinement is unlikely to be trapped in local minima.

An important technical contribution of this work is a new view-independent matching

algorithm between a 3D full-body surface mesh and a depth map. A new challenge in

any single-view setup is that the input is view-dependent and incomplete. Matching the

depth map directly with a complete surface mesh, with non-rigid deformation, can lead to

inaccurate or even wrong initial body configuration estimation and eventually reduce the

final accuracy. Toward this end, we apply PCA to both the input depth map and the motion

database; first aligning them in the three principal axes, then searching in a reduced space

to both accelerate the computation and remove ambiguity caused by small variations in
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postures. Our method can effectively handle body-size variations across subjects, benefit-

ing from the matching approach and the non-rigid point registration. In addition, we extend

a point denoising scheme to significantly reduce the noise and outliers in the input depth

map – a problem that is detrimental in practice.

4.1 Overview

In our method, a motion database is utilized, which is generated by driving a generic hu-

man mesh model with movements captured from an eight-camera optical motion capture

system [8] operating at 120Hz. Around 19300 poses are recorded, including walking, run-

ning, bending, etc. The human model includes both a surface mesh and an embedded

skeleton that contains 19 joints, as shown in Figure 3.3. The mesh model is animated with

linear blending technique according to the recorded motions [93]. We denote a deformed

mesh under a certain pose asMl. Four synthesized depth images, denoted as {Pi
l}

4
i=1, are

also rendered from four different perspectives. These depth images will be used for view-

independent shape matching explained in Section 4.3.1.

The input to our approach is one or more depth images {X j}
N
j=1, or equivalently point

clouds, from a single depth sensor (we will use these two terms interchangeably through

this chapter). Our goal is to estimate a configuration Υ̂ j given a depth image X j based on

our motion database {Ml,P
1
l ,P

2
l ,P

3
l ,P

4
l ,Υl}.

Figure 4.1 shows the outline of our processing pipeline. Given a point cloud, we first

remove irrelevant objects based on distance information, for which we use two fixed dis-

tance thresholds representing the interested distance range throughout our test. A modified

surface reconstruction algorithm is applied to remove noise. Then the cleaned point cloud

27



www.manaraa.com

Depth 

Thresholding

Point Cloud 

Denoising

Alignment and 

Database Search

Shape Refinement 

and Completion

Skeleton 

Estimation

Failure 

Detection 

and 

Recovery

Best

Match

Figure 4.1: The outline of our processing pipeline. The leftmost image is a typical depth
map, we define distance thresholds to cut the subject out. It goes through a number of
processing stages, generating the estimated skeleton embedded in the input point cloud.

is transformed into a canonical coordinate frame in order to remove viewpoint dependency,

and a similar pose is identified in our motion database. Then a refined pose configuration is

estimated through non-rigid registration between the input and the rendered depth map for

the corresponding pose. We rely on database exemplars and a shape completion method to

deal with large occlusions, i.e., missing body parts. Finally a failure detection and recovery

mechanism is adopted to handle occasional failures from previous steps, using the temporal

information.

4.2 Point Cloud Segmentation and Denoising

The input depth map first needs to be processed to remove background and noise. Given

the depth information, background objects can be easily removed by defining a bounding

box or through background subtraction. However, the noise level in the depth map from

typical ToF sensor is significant as shown in Figure 4.2(a). This is most likely due to the

long range (for full body capture) between the subject and the camera. Since our subse-

quent processing requires finding point correspondences between the input point cloud and

database exemplar, we need to overcome this obstacle of noisy input. Here we modify a

28



www.manaraa.com

(a) (b) (c) (d)

Figure 4.2: Comparison of original LOP and our modified LOP applied on a point cloud
from depth sensor. from left to right (a) the input; (b) LOP with support radius of 0.2m; (c)
LOP with support radius of 0.1m; (d) with our modified LOP.

surface reconstruction algorithm–Locally Optimal Projection (LOP) [80] for denoising.

LOP is a parameterization-free operator that, given a target point-setP= {pi}i∈I , projects

an arbitrary point-set X = {x j} j∈J onto the data P, to reconstruct the underlying geometry

structure in the data P. The criteria is to minimize the sum of weighted distances between

the projected point-set and P, meanwhile preventing points in the projected point-set being

too close to each other. Applying LOP directly to our point cloud is problematic though.

The amount of smoothness is controlled by a radius value h, which determines how big a

neighborhood a projected point can contribute to the objective distance function. As shown

in Figure 4.2, if h is too large, it leads to obvious shrinkage of the point cloud; if h is too

small, there is little effect of denoising.

We thereby seek a solution that offers both smoothness and the preservation of geomet-

ric structure. With a closer look into applying this method to the depth map, we realize that

shrinkage could be avoided by projecting only z coordinates of the point-set, which con-

tains the most important depth information; while x and y can then be calculated through

re-projection.
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Therefore, given a point-set P = {pi}i∈I , where pi = [xi,yi,zi] ∈ R3 are the 3D coordi-

nates, following the original derivation in [80], our modified LOP algorithm is initialized

as follows:

z(1)
i =

∑
s∈I zs ∗ θ(‖ps− pi‖)∑

s∈I θ(‖ps− pi‖)
(4.1)

x(1)
i = z(1)

i ∗ xi/zi (4.2)

y(1)
i = z(1)

i ∗ yi/zi (4.3)

where θ(·) is a fast decreasing function controlled by h, θ(r) = e−16r2/h2
. Then for each

iteration k = 1,2, . . . K, the point is updated as

z(k+1)
i =

∑
s∈I α

i
szs∑

s∈I α
i
s

+µ

∑
s∈I\{i} ‖p

(k)
i − p(k)

s ‖β
i
s∑

s∈I\{i} β
i
s

(4.4)

x(k+1)
i = z(k+1)

i ∗ xi/zi (4.5)

y(k+1)
i = z(k+1)

i ∗ yi/zi (4.6)

where

αi
s =

θ(‖p(k)
s − pi‖)

‖p(k)
s − pi‖

(4.7)

βi
s =

θ(‖p(k)
s − p(k)

i ‖)

‖p(k)
s − p(k)

i ‖

∣∣∣∣∂η
∂r

(‖p(k)
s − p(k)

i ‖)
∣∣∣∣ (4.8)

Here η(r) = 1/3r3 and µ ∈ [0,1/2) is a repulsion parameter that leverages between smooth-

ness and surface geometry accuracy. In practice we found that setting h = 0.5 and µ = 0.35

usually obtains the best results within K = 5 iterations. After applying LOP, we also re-

move isolated outliers since these points do not have effective supporting neighborhood and

remain unchanged after projection. These points are identified by thresholding distance to

their nearest point. The effectiveness of our denoising scheme is shown in Figure 4.3, in
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Figure 4.3: Comparison of point cloud smoothing using bilateral filtering and our modified
LOP algorithm. From left to right: input; after Bilateral Filtering; after our modified LOP.

which we also compare it with bilateral filtering (BF) on the depth map. BF generates un-

desirable points connecting disjoint parts, probably due to the low-resolution of the depth

map and too many stray points on occlusion boundaries.

4.3 Model Based Motion Estimation

After the depth map has been segmented and cleaned, our next step is to search for a

similar pose in the motion database. Directly measuring similarity between the complete

mesh model and a depth map is difficult, since a depth map is incomplete (at least 50%

of a subject’s information is missing) and there is no prior knowledge about from what

viewpoint a depth map is captured.

Our solution to this search problem involves two steps. First we generate several syn-

thesized depth maps from representative viewing directions, and align the input point cloud

to these representative views, in this way removing the viewpoint dependency of the input

point cloud. Then we apply dimension reduction techniques to find the most similar depth

map (and body configuration) efficiently.
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Figure 4.4: Visualization of the three principal axes (color-coded) of different point clouds.
They are quite stable across different viewpoints. Two different poses are shown. (The
right-most one is rendered from back-view with the entire right leg occluded.)

4.3.1 Point Cloud Alignment

We address this viewpoint dependency problem with the observation that principal axes

of a point cloud provide robust characteristics of a pose, through which a transformation

can be constructed and applied on the point cloud to rectify it to a canonical view. More

specifically, given a point cloud X of dimension N × 3, the principal axes are the eigen-

vectors of the 3× 3 covariance matrix that represents the three major directions the point

cloud spans. As we can see in Figure 4.4, they generally provide sufficient match across

different view points for our purpose; while our neighbor search and non-rigid registration

approach described in the following sections can deal with remaining small misalignment.

Therefore we can define a local coordinate frame based on the mean value of the point

cloud and the three principle axes. Note that we do not know the positive direction of the

principal axes, therefore we pick the largest principle axis and define its positive (“up”)

direction as the up-direction of the camera coordinate–assuming the camera is usually not

up-side-down. Using the point cloud’s mean value as the origin, we define four canonical

coordinate frames by alternating the positive directions of the remaining two axes. For
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each canonical coordinate frame, we define a virtual depth camera that is away from the

origin and looking into the depth direction. Each mesh model Ml is transformed into its

own canonical coordinate frames and four synthesize depth maps are rendered, denoted as

{Pi
l}

4
i=1.

For an input point cloud X, we also compute such a transformation T but with the

difference that we just pick a random positive direction for the remaining two axes. The

transformed point cloud Xc = T (X) is in a view-independent canonical coordinate frame.

4.3.2 Nearest-Neighbor Search in Low-Dimensional Subspace

In Xc the viewpoint dependency is mostly removed. We can now search the synthesized

depth maps to find the most similar pose. One could search in 3D space by comparing the

point distances in 3D,we instead search in the PCA space of the image space and look for a

Pi
l that is closest toXc in the PCA space. More specifically, all synthesized depth maps {Pi

l}

are vectorized and stacked into a matrix from which a PCA subspace and corresponding

coefficient vectors {λi
l} are learned.

Xc is re-synthesized as a standard depth image in the canonical view and vectorized to

calculate PCA coefficients in this subspace. Finally, a most similar pose is identified by

finding Pi
l closest to Xc in the PCA space, i.e. finding < l, i > that satisfies

< l, i >= argmin
1≤l≤Nc,1≤i≤4

{‖λi
l−γ‖} (4.9)

Up to now we have obtained a point cloud Pi
l and its corresponding surface model

Ml that are in similar pose as Xc. Since Ml has a known joint configuration, an initial

estimation of the joint configuration of Xc is obtained. Note everything is now defined
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Figure 4.5: The mean estimation error of our approach on Stanford’s public test dataset
that consists of 28 sequences of motions,compared with the results reported in [52] using
Hill Climbing combined with Evidence Propagation (HC+EP)

in a canonical coordinate frame, we need to apply the inverse transform T−1 to Ml and

joint configurations so that they are in the input coordinate frame. Such transformation

facilitates the refinement process discussed in the next section. For the sake of simplicity

in notation, we assumeMl,P
i
l are defined in the input coordinate frame from this point on.

4.4 Experimental Results

Our system is implemented in Matlab and evaluated mainly based on the public dataset

provided by Stanford [52]. This dataset consists of 28 sequences of motions, of which

about half contain 100 frames and the others have 400 frames, all recorded at 25fps with a

depth camera of resolution 176×144. The motions range from simple movements such as

lifting a hand to a very challenging tennis swing with severe occlusion and simultaneous

movements of several body parts. Locations of 3D markers attached to the subject’s body

measured using a commercial active marker motion capture system are provided as ground

truth. In order to compare with this ground truth, we choose a set of patches on our mesh
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model to approximate the position of markers according to their markers setup, as was done

in [52]. Then estimation error is measured as

ē =
1

N f

N f∑
k=1

1
Nm

Nm∑
i=1

‖mi− m̂i‖ (4.10)

where N f and Nm are number of frames and markers respectively. mi is measured ground

truth of marker location and m̂i is our estimation. Throughout our evaluation we use the

single motion database described in the beginning of Section 4.1. Figure 4.5 shows our

estimation error for all 28 test sequences, compared with the best result reported in [52],

which combines Hill Climbing(HC) search and Evidence Propagation(EP). As we can see,

our method achieves substantially higher accuracy, with a total mean error around 38mm,

compared to their 100mm. It should be emphasized that we use a generic human model to

generate our own database, no sequence from the test data is in our motion database; and

we always use the entire database (e.g., the nearest neighbor search is global, instead of

sequence specific). As a tradeoff for the high accuracy, the computational time is currently

non-real time, mainly due to the non-rigid registration process. With our implementation

in Matlab, the running time for each frame is between 60s and 150s, depending on the

number of points and pose differences.

In the remainder of this section, we will show the effectiveness of various components

of our pipeline. We use two representative sequences from the Stanford dataset for demon-

stration: sequence 21 of moderate complexity that includes mainly hand and feet movement

and sequence 27 which is the most challenging tennis swing motion.
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Figure 4.6: Comparison of estimation errors of three methods: using our entire pipeline,
without smoothing and directly using neighbor pose without refinement. The results
demonstrate the necessity of such processing components.

4.4.1 The Effectiveness of Denoising

The point cloud denoising procedure is important for our method to correctly estimate

poses, due to the way it is designed. Simply applying this approach to an original point

cloud with background objects removed gives unsatisfactory results as shown in Figure 4.6.

The importance of our smoothing module arises from two reasons: in the presence of severe

noise, neighbor search is erroneous and CPD is strongly perturbed.

4.4.2 The Effectiveness of Pose Refinement

Here we show both the effectiveness of our neighbor search approach and the necessity of

pose refinement. In Figure 4.6 we see that directly representing the pose of an input point

cloud by that of the identified neighbor sample results in higher estimation error. On the

other hand, the error for sequence 21 is still acceptable, meaning that similar poses are in

general correctly localized. In the meantime, the reason we have larger errors for sequence

27 is that the pose of the neighbor exemplar cannot properly approximate the input, since

our database might not contain such substantially similar poses. In general, pose refinement
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(1) Frontal View (2) View Angle of 30 Degree (3)Upper Right View

Figure 4.7: Viewpoint independency test. First row: examples of synthetic inputs (see text
for explanation). Second row shows quantitative evaluations.

is required for accurate estimation.

4.4.3 Viewpoint Independency

The test sequences in Stanford’s dataset were basically captured from the frontal view, and

re-rendering from those partial point clouds with different viewpoints would result in even

more incomplete data. To verify the issue of view independency, we test on three synthetic

sequences rendered with our mesh model walking. Shown in the first row of Figure 4.7, the

first sequence is captured from then normal frontal view; the second one with a roll angle of

30 degrees; and the last case with the camera looking from the upper right direction, tilting

down. The quantitative results are shown in the second row of Figure 4.7. It can been seen

easily what the detrimental effect of view-dependent input can be, if not handled.

37



www.manaraa.com

Figure 4.8: An example of our failure case (left), for which the most similar pose in our
database (right) exhibits a very large difference in pose.

300 310 320 330 340 350 360 370 380 390 400
0

0.1

0.2

0.3

0.4

0.5

Test Frame ID of Sequence 27

M
ea

n 
E

st
im

at
io

n 
E

rr
or

 [m
]  

   
  

 

 

Before Failure Detection
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Figure 4.9: Estimation errors, with and without failure detection and recovery, of the test
frames where failure cases happen and our failure detection and recovery method takes
effects.

4.4.4 Failure Detection

In this experiment we use the input from frame 301 to frame 400 of sequence 27 as an

example. Among these test frames, for around 35 frames the subject remains in a relative

static pose for which our database does not have a similar one. The difference is shown in

Figure 4.8. Under this situation, our failure detection and recovery mechanism takes effect

and re-estimates poses for input through temporal information. The comparison of results

with and without such detection and recovery is shown in Figure 4.9. As we can see, failure

poses were effectively recovered. However, notice that for a majority of the test sequence

in this dataset, our regular pipeline can generate good results.
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Figure 4.10: Estimation errors of our approach with a set of motion samples which is
sub-sampled from our original database, with different ratios.

4.4.5 Database Dependency

In this test, we aim at quantitatively determining the relationship between our estimation

result and the number of database samples. Originally our database contains around 19000

samples with the sampling rate of 120fps. We sub-sample it with different ratios up to

100, which corresponds to a minimum sampling rate of 1fps, and show the corresponding

estimation errors in Figure 4.10. For sequence 21, only a small set of samples are sufficient.

On the other hand, for the complicated movements in sequence 27, denser samples are

required. Overall our method is quite insensitive to sampling rate.

4.4.6 Qualitative Evaluation using Kinect

We have performed a qualitative comparison using the pose tracking algorithm in [97] (as

of the year of 2011). Figure 4.11 show some examples of visual comparisons. The primary

reason that we didn’t compare quantitatively is due to the lack of ground-truth data. The

markers used in a typical optical motion capture systems (which are considered as golden

standard) will interfere with the Kinect Sensor. Nevertheless even just visual inspection

can clearly demonstrate the improved accuracy in our method. The deficiencies visually
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Figure 4.11: Examples of estimation results using pose tracking algorithms in [97]((a) and
(c)) and our method ((b) and (d)), from depth images captured by Kinect.

Figure 4.12: Examples of our experiments on two subjects with very different body sizes.
The two images on the left are results on a 1.9m adult, while the other two on the right are
results on a 1.6m child.

identified in [97] include (1) joint positions are not consistent with input depth maps when

the subject is moving; (2) joint centers are unrealistically located on the surface, especially

for the arms; and (3) catastrophic failure in simple motion (such as a crouch). A visual

side-by-side comparison is presented in the supplementary video.

4.4.7 Body-size Invariance

Our method is capable of handling large body-size variations across subjects. Notice that

the subject in the test above (≈ 1.7m) is different from both the subject in the public dataset
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and our template model. In order to further demonstrate this capability, we perform tests

on a higher subject (≈ 1.9m) and a child (≈ 1.2m) as illustrated in Figure 4.12.

4.5 Conclusion

In this chapter, we present an effective pipeline that achieves highly accurate and robust

pose estimation from a single depth image. The key insight is to combine data-driven pose

detection with pose refinement. By using a prior database, we not only reduce the possible

joint configuration space, but also provide an effective way to fill in the unobservable parts.

Our pose refinement scheme can accommodate both pose difference and body-size differ-

ence. In addition we carefully design our pose detection algorithm to be view-independent.

All these together dramatically reduce the size of the motion database – we only need mo-

tion samples synthesized from one generic human model. Quantitative evaluation shows

that we achieve more than two times better accuracy than previous state-of-the-art (38mm

vs. 100mm).

However, this approach, similar to other discriminative and hybrid motion capture ap-

proaches, does not preserve consistent skeletal structure over time which might be unde-

sired in some applications. Starting from next chapter, we will introduce our two model-

based algorithms that can provide real-time consistent pose and shape estimation, staring

with preliminaries of our pose and shape representation.
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Chapter 5 Real-Time Model-based Pose and Shape Estimation with Closest Point

Strategy

In scenarios such as Virtual Try-On and medical applications, it is desired to maintain a

consistent skeletal structure and shape during tracking. In this chapter, I present a gener-

ative tracker based on the Iterative Closest Point (ICP) strategy. Requiring only a generic

human body template, our formulation is able to handle significant occlusion in a single

depth map (≥ 50% of missing data) as well as maintain temporal consistency from the noisy

depth input generated by commodity depth cameras. The key is our novel constraints that

effectively guides the local optimization. The output of our tracking algorithm is a body

mesh that accurately adapts to the user’s motion and body shape. The mesh is complete

and maintains the same topology over time.

Our tracking method is most similar to [50] and [62], using a twist-based pose rep-

resentation. However, we propose a set of constraints that are experimentally found to

Pose and Geometric 
Shape Adaptation

Body Size (Limb 
Lengths) Adaptation

Initialization (One Frame)

Live data

Adjusted 
Template Model

Figure 5.1: The diagram of our pose tracking system. During initialization, our system
takes in one single frame of depth map and adjusts the limb lengths of the template. For
each frame of the live data, we perform pose and shape adaptation to adjust the template
for better personalization.
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be effective for accommodating monocular data and therefore improve the robustness of

the tracker. Moreover, our linearization of the exponential map better satisfies the small

quantity requirement for first-order approximation compared to [50] and leads to linear

optimization compared to the nonlinear one in [62]. There are three components in our

tracking system: twist-based pose estimation, surface adaptation and body size estimation

during initialization as shown in Figure 5.1. Our template and the twist-based articulated

deformation model has been introduced in Chapter 3. In the following sections, we first de-

scribe our pose estimation method based on the twist-representation followed by the shape

and body size adaptation.

5.1 Pose Tracking via Closest Points

The goal of pose tracking is to estimate the change in pose given the current configuration

Θt and an observation of the surface vertices in a new configuration Θt+1. Therefore, if the

surface point correspondences between these two poses are given, we can use Equation 3.24

and estimate the change of pose by minimizing the following energy function

Ec =

M∑
m=1

∥∥∥∥ωt+1
m

(
vm(Θt+1)− ct+1

m

)∥∥∥∥2
(5.1)

≈

M∑
m=1

∥∥∥∥ωt+1
m

(
vm(Θt) + It

m∆ξ
t
g +

n∑
k=1

βi,kξ̂′
t
kvm(Θt)∆θt

k − ct+1
m

)∥∥∥∥2
(5.2)

where target surface point vm(Θt+1) and its correspondence ct+1
m are weighted by ωt+1

m .

Since vm(Θt) is known, the change of pose ∆Θt =
[
∆ξt

g,∆θ
t
1, · · · ,∆θ

t
K
]T can be obtained by

solving this linear equation.

In reality, the true correspondences are not known a priori and therefore should be es-

timated. Similar to [50] and [62], we adopt the simple yet popular Iterative Closest Point

43



www.manaraa.com

(ICP) strategy. Consequently, Equation 5.2 is solved iteratively with the point correspon-

dences updated at each iteration. The strategies used to find correspondence are very im-

portant to the performance of the tracker. Rusinkiewicz et al. [100] conducted comparative

studies of several alternatives for each component in the ICP framework for single rigid ob-

ject registration. We also investigated these options and found that the following strategies

worked well in our case:

1. 3D closest point for correspondence finding;

2. Distance and normal thresholding for correspondence pruning;

3. Rejection of correspondences containing edge points.

The projection based scheme used in [50] is found to be more sensitive to occlusions and

therefore discarded. KD-tree is used for speeding up the closest point search.

In order to make our system more robust in accommodating monocular data, we addi-

tionally propose the following strategies:

1. Visibility constraint;

2. Relaxed bijective consistency constraint;

3. Edge-to-edge correspondences.

Notice that we first reject correspondences containing edge points following the sugges-

tions in [100], and then explicitly construct edge-to-edge point correspondences. Such

choices are designed to avoid correspondences between inner points and edge points that

sometimes are problematic. A typical situation is when part of the body moves out of the

view and false edges are created at the boundary. This constraint can avoid the matching

of these points and thus help the tracker better deal with such partial observation. In the
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𝑝1 
𝑝2 

𝑣1 

𝑣2 

𝑝3 

𝑝4 

Observation Template Observation Template 

(a) Visibility Constraint (b) Relaxed Bijective Consistency Constraint 

Figure 5.2: 2D examples illustrating the effectiveness of two of our constraints. The arrows
connect a point to its closest point on the other surface. In (a), the dash lines representing
occluded regions. The visible points (black circles) attempt to move to the right as desired;
while the invisible points (the gray circles) tend to move the surface upward and could lead
to incorrect local optima if not excluded. In (b), since p1 and p2 belong to two different
segments, our relaxed bijective consistency constraint will reject < p1,v1 >, so will the
original version. However, the pair < p3,v2 > will also be rejected by the original version.
By contrast, our relaxed version will accept it, and therefore, could guide the tracker more
effectively.

following, we will first discuss the first two constraints for pruning correspondences and

then demonstrate how we use the edge-to-edge correspondences to better guide the tracker.

The visibility constraint means only visible points are used to construct point corre-

spondences. On one hand, this strategy is important for dealing with monocular data by

avoiding plenty of unnecessary computation and erroneous correspondences containing in-

visible points. Similar to the rejection of inner-to-edge correspondences mentioned above,

the visibility constraint prevents the part of body that is out of camera view from causing

errors. On the other hand, this constraint might reduce the power to handle large rotations,

in which case the invisible points close to the visibility boundary are important for driving

the surface towards its correct orientation. Therefore, we relax the constraint by including

points close to the visibility boundary. More specifically, we render a depth map for the

surface mesh and reject points whose projected depths are larger then the corresponding
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rendered depths by a certain threshold.

The relaxed bijective consistency constraint is designed to prevent the local closest

point search from driving a surface vertex towards an observed point that is from another

segment. Originally, the bijective consistency constraint requires a pair of points to be clos-

est to each other among their own point sets to be considered as a correspondence [136].

However, this strictly bijective consistency constraint could be sensitive to noises and gen-

erally requires a relatively large number of iterations to converge. To overcome this lim-

itation, we propose a relaxed bijective consistency that considers the consistency of joint

belonging. Such constraint between a pair of points < vm, cm > can be expressed as

b(m) ≡ b( f (cm)) (5.3)

where b(m) denotes the index of the joint that vertex m belongs to (same as in Chapter 3),

and f (cm) represents the index of the closest point of cm on the surface mesh. This con-

straints requires that the closest point of the observation cm on the surface mesh and the

given surface vertex vm belong to the same body segment. One could further set distance

or normal thresholds between these two points; although we do not find this critical as

evidenced by experimental observations. For our skinning mesh, we define b(i) as the

joint with maximum skinning weight for vertex i. Figure 5.2 illustrates how the proposed

constraint can prevent incorrect matching situations while still preserving effectiveness in

identifying correct ones.

Besides the correspondences between surface points, we further enforce edge con-

straints to guide the tracker, similar to [50, 51]. First of all, edge points are extracted

from the depth maps of the observed surface as well as our surface mesh. Edges that are
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(a) True (green) and false 
(red) edge points 

𝑣 

𝑝2 

𝑝3 

𝑝1 

(b) Advantage of our two stage 
edge correspondence search 

Figure 5.3: Edge point correspondences. (a) The false edge points due to self-occlusion are
not used as they do not correspond to true shape boundary. (b) The dash lines represents
projection, and the red dash circle indicates the range of candidate points to match v based
on 2D measurement. With closest point in 3D, v is matched to a noise p1. With closest
point in 2D, it is matched to p2. With our two stage approach, it can be mapped to the point
p3 on the correct target. However, it cannot handle the situation that projection of p1 or p2
lies in the red circle. In most cases, it is better than direct 3D or 2D closest point strategy.

not on the silhouette boundary are mainly due to self-occlusion. For these edge points, we

only keep those points from the closer part, and ignore the occluded part as they do not

correspond to real surface boundary, as shown in Figure 5.3(a). For each of the template

edge points, we find ks nearest points in the 2D image plane, and keep the one closest in

3D space for reasons illustrated in Figure 5.3(b). The distance and normal thresholding are

again applied. However, in this case, the normals are 2D normals computed from the edge

contour, instead of 3D vertex normals that are generally inaccurate for edge points of the

observed surface.

With a set of edge point correspondences {< vm(Θt), ct+1
m > |m ∈ Et} extracted, the edge

constraint requires the projections of the surface points to lie on the projections of their

correspondences, denoted as {< u(ct+1
m ),v(ct+1

m ) > |m ∈ Et}. Given the projection matrix P,
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the edge constraint can be formulated as [51]

[
p1

r −u(ct+1
m ) · p3

r
p2

r − v(ct+1
m ) · p3

r

]
· vm(Θt) =

[
u(ct+1

m ) · p3
t − p1

t
v(ct+1

m ) · p3
t − p2

t

]
, i ∈ Et (5.4)

where pi
r(i = 1,2,3) is the ith row of the first 3×3 sub-matrix of P, and pi

t is the ith element

of the fourth column of P. For simplicity, we denote the 2× 3 matrix on the left-hand

side as Ht+1
m and the 2D vector on the right-hand side as ht+1

m . Since we want the vertex

positions under a new pose Θt+1 to satisfy this constraint, we can combine Equation 3.24

and Equation 5.4 to form the edge energy function:

Ee =
∑
m∈Et

∥∥∥∥τt+1
m

(
Ht+1

m
(
vm(Θt) + It

m ·∆ξ
t
g +

K∑
k=1

βm,kξ̂′
t
kvm(Θt)∆θt

k
)
− ht+1

m

)∥∥∥∥2
(5.5)

Our final tracking energy function consists of a weighted combination of Equation 5.2

and Equation 5.5, as well as a regularization term that penalizes large pose change which

is required according to the first order linearization:

E = Es +λeEe +λr

∥∥∥∥∆ξt
g

∥∥∥∥2
+

K∑
k=1

∥∥∥∥∆θt
k

∥∥∥∥2
 (5.6)

The relative weight λr is set to 1, and λe is set as the inverse of the maximum of input depth

map size in our experiments to avoid dependency on image size. For each new frame,

this energy is iteratively optimized until the maximum movement of visible surface points

is smaller than a given threshold, which is empirically set to 3mm in our experiments.

Table. 5.1 summarizes the set of constraints and the parameters used for point matching

in our tracker. The per-vertex weights {wm} and {τm} are currently set to 1 for points that

satisfy these constraints and 0 otherwise.
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Table 5.1: The constraints and parameters used for point correspondence construction.

Distance Normal Ignore boundary Visibility Relaxed
bijective

Surface 200mm 60◦ Yes Yes Yes
Edge 200mm 90◦ No N/A Yes

5.2 Surface Geometry Adaptation

After the pose has been estimated, the surface model should be fitted to the shape of the

observation to ensure consistency between the final simulated clothes and the shape of the

subject. We utilize both the captured surface geometry and edge information for this task.

Note that the edge information from depth data is richer than silhouettes from color im-

ages. We rely on the same energy functions as in our pose tracker, namely Equation 5.2

and Equation 5.5. In general, the surface vertices are allowed to move in any direction.

However, we constraint the movement of a vertex to be along its normal direction to par-

tially overcome the ambiguities in monocular data. In fact, this constraint can partially

prevent over-fitting the template to deformations of clothes. Therefore we only need to es-

timate the magnitudes of the movement, i.e. the displacements {dm}. The energy function

due to point correspondences, with the updated pose, then becomes

Efit
c =

M∑
m=1

∥∥∥∥ωt+1
m

(
vm(Θt+1) + nt+1

m ·dt+1
m − ct+1

m

)∥∥∥∥2

+λfit
e

∑
i∈E

∥∥∥∥τt+1
m

(
Ht+1

m
(
vm(Θt+1) + nt+1 ·dt+1

m − ht+1
m

))∥∥∥∥2
(5.7)

with Ht+1
m and ht+1

m defined in Equation 5.4. The values of the per-vertex weights {ωt+1
m }

and {τt+1
m } are the same as in the pose tracker. Notice the vertex normals {nt+1

m } are always

calculated from the original surface mesh without displacement and then rotated based on

the current pose. This strategy is designed to prevent surface distortion due to accumulated
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drifting in a long sequence of motions. Since before the fitting stage, the template mesh

has been aligned to the observation with the estimated pose, we use a smaller distance

threshold (50mm) for all correspondences, as well as a smaller angular threshold (60◦)

for edge correspondences. Similarly the global weight λfit
e is set to 2 to favor the edge

correspondences.

Since this fitting process is performed for each frame independently, the fitted surface

mesh might suffer from temporal jittering. This will eventually produce visual artifacts in

cloth simulation. Therefore, we add another three energy functions to enforce temporal

and spatial smoothness. The first term penalizes the distortion of the surface geometry via

vertex Laplacian coordinates [51]; while the other two terms directly minimize large dis-

placement changes temporally and spatially, respectively. The energy functions are defined

as:

Efit
l =

M∑
m=1

∥∥∥∥ ∑
<m, j>∈F

(
nt+1

j ·d
t+1
j

)
− nt+1

m ·dt+1
m

∥∥∥∥2
(5.8)

Efit
t =

M∑
m=1

1

σ2
m

t (dt+1
m −µt

m)2 (5.9)

Efit
s =

∑
<i, j>∈F

(dt+1
i −dt+1

j )2 (5.10)

Notice the first term is equivalent to minimizing the discrepancy of the Laplacian coor-

dinates of the surface vertex with and without considering the displacement. µt
m and σ2

m
t

are the mean and variance of the estimated displacements for vertex i up to frame t. One

could alternatively measure the difference of displacement magnitude between consecutive

frames. However, it does not prevent the surface from being overfitted in the presence of

severe occlusions. Instead, our energy function forces the displacements to stabilize after

sufficient observations are made, while still allowing flexibility for regions that are not rigid
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Figure 5.4: A male (left) and a female (right) example showing the surface estimation re-
sults. The first row shows the template without displacements overlayed on the input, while
the second row shows the one with displacements. The highlighted regions demonstrate its
effectiveness.

via the variance-based weighting. Both the means and variances are updated in an online

fashion.

Our final fitting energy is then the weighted combination of all the terms defined above:

Efit = Efit
c +λfit

l Efit
l +λfit

t Efit
t +λfit

s Efit
s (5.11)

with empirical settings of λfit
l = 4,λfit

t = 6 and λfit
s = 2. The term Et is set to take effect

only after a certain number of frames (20 in our experiments) so that the means and vari-

ances are better estimated. For each frame, after the displacements are estimated, they are

incorporated in the skinning model for pose estimation for the next frame. As the shape

consistency increases via this fitting process, the accuracy of the pose estimation is also

improved. Figure 5.4 shows two examples of adapting the shape of our template model to
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the observed meshes.

5.3 Body Size Adaptation

Generative approaches generally need to address the issue of body sizes variations between

the template and the subject. The effectiveness of a pose tracker usually relies heavily on

such consistency. Our method iterates between updating the pose and adjusting the limb

lengths, similar to [53]. We utilize the differential bone coordinates introduced by Straka

et al. [110]. While their method results in non-linear optimization when incorporating

constraints for limb lengths (e.g body symmetry or fixed lengths for some limbs), our

method is always linear.

The differential body coordinates is defined by Straka et al. [110] in a way similar to

the Laplacian coordinates:

ηm =

n∑
k=1

αm,k
(
vm−

(
gk − (1−γm,k)dk

))
(5.12)

where {αm,k} are the skinning weights, gk and dk are the position of joint k and the vec-

tor from its parent joint to gk, respectively. The coefficient γm,k is chosen such that the

line between vm and ηm,k is orthogonal to the bone vector dk. Each vector ηm,k encodes

the relative position of the vertex vm to bone k, while the differential bone coordinate ηm

accumulates over all the controlling bones of this vertex.

To adapt the limb lengths of our template model to the observation in pose Θt, we

estimate a scale for each limb so that the scaled surface mesh best matches the observation.

With the set of scales S = {sk}, the bone vectors under the given pose then become {skdt
k}
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and the joint positions can be computed as

gk(Θt,S) = gr(Θ
t) +

n∑
j=1

δ j,ks jdt
j (5.13)

where gr(Θt) is the global position (position of the root) in pose Θt. According to Equa-

tion 5.12, we can reconstruct the scaled vertex positions {vm(Θt,S)} as follows

vm(Θt,S) = ηm +

n∑
k=1

αm,k
(
gk(Θt,S)− (1−γm,k)skdt

k

)
(5.14)

Substitute Equation 5.13 into Equation 5.14, we have

vi(Θt,S) = ηi +

n∑
k=1

αi,k

(
gr(Θ

t) +

n∑
j=1

δ j,ks jdt
j− (1−γi,k)skdt

k

)

= ηi + gr(Θ
t) +

n∑
k=1

αi,k

n∑
j=1

δ j,ks jdt
j−

n∑
k=1

αi,k(1−γi,k)skdt
k

)
= ηi + gr(Θ

t) +

n∑
j=1

βi, js jdt
j−

n∑
k=1

αi,k(1−γi,k)skdt
k

= ηi + gr(Θ
t) +

n∑
j=1

ρi, js jdt
j (5.15)

where ρi,k = βi,k −αi,k(1−γi,k) (5.16)

The consistency of the scaled surface mesh and the observation is again measured via

the distance between point correspondences. Specifically, we use the strategies described in

Sec. 5.2 to construct point correspondences, and then minimize the energies in Equation 5.2

and Equation 5.5 parametrized on the scales:

Es
c =

M∑
m=1

∥∥∥∥ωm
(
vm(Θt,S)− ct

m

)∥∥∥∥2
+λs

e

∑
i∈E

∥∥∥∥τm
(
Ht

mvm(Θt,S)− ht
m

)∥∥∥∥2
(5.17)

Substituting Equation 5.15 into Equation 5.17, we obtain the following energy function:
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Es
c =

M∑
m=1

∥∥∥∥ωm
( n∑

k=1

ρm,kskbt
k +ηm + gr(Θ

t)− cm
)∥∥∥∥2

+λs
e

∑
m∈E

∥∥∥∥τm
(
Hm

( n∑
k=1

ρm,kskbt
k +ηm + gr(Θ

t)
)
− hm

)∥∥∥∥2
(5.18)

In addition, we add a regularization term that enforces scale consistency between a set

of pre-defined bone pairs B = {< j,k >} . The consistency enforces symmetry, e.g. left leg

vs. right leg, as well as connected bone consistency, e.g. left upper leg vs. left lower leg.

Therefore our final scale estimation energy function can be written as:

Es = Es
c +λs

r

∑
< j,k>∈B

υ j,k(s j− sk)2 (5.19)

In our experiments, we set the weights {υ j,k} to 1 for body symmetry constraints and 0.5 for

the connected bone consistency. To perform the body size adaptation, our method iterates

between the pose estimation and the scales estimation. However, we require each step

to converge before switching to another one (see Algorithm 1). This procedure is more

stable and effective than switching at each iteration. The body size fitting is performed

only during initialization for each subject to prevent over-fitting in the tracking procedure,

for example due to partial observation. Figure 5.5 shows an example of the template scaled

to fit to the observation. The pose in this figure (the calibration pose) is preferable for the

scale estimation as it implicitly encodes the position of the real joints and therefore helps

to provide correct estimates of the scales.
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5.4 The Tracking Pipeline

For a new subject, our system starts with the body size adaptation and then moves to the

regular tracking-fitting procedure. In general, both a global transformation and a rough

initial pose should be given due to the local nature of our method. The initial global trans-

formation can be estimated via principal axes if the entire body of the subject is observable;

via other discriminative approaches [104,133]; or simply via human interaction. We do not

intend to address this general problem but instead assume the rough initial alignment is

given. As for the local body pose, we assume the that subject starts with a T-pose. How-

ever, as long as it is not dramatically different from the starting pose of our template, our

tracker is able to drive the template to the initial subject pose. In practice, a frontal view

pose is preferable due to its relatively small ambiguities. The entire pipeline of our tracking

system is summarized in Algorithm 1.

5.5 Experimental Results

We tested our system on an Intel Core i5-2500K 3.3GHz CPU with an NVIDIA Tesla

C2075 GPGPU processor. Our input data are captured using a single Kinect camera with a

resolution of 640×480 and sampling frequency of 30FPS . As our tracker does not require

the entire body to be observed, except for the body size adaptation step, there is no specific

restriction on the camera position and orientation. However, even though our tracking

algorithm can deal with some noise, we do assume the input data are segmented and only

the part of the surfaces belonging to the subject is provided to our tracker. Assuming the

camera is fixed during data acquisition, we fit a plane to the ground and remove points that
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Data: Captured surface sequence, template model, calibration pose Θc and initial
tracking pose Θ0.

Result: Scales S, body poses {Θt} and displacements {dt
m}.

begin Body size adaptation
Initialize the template with pose Θc and Scales S′ = {1}
while Scales S not converged do

Update template with scales S
while Pose not converged do

Construct correspondences
Estimate pose via Equation 5.6

end
while Scales S′ not converged do

Construct correspondences
Estimate scales via Equation 5.19

end
Set S = S′

end
end
Initialize the template with pose Θ0 and scales S
for Each frame t do

while Pose Θt not converged do
Construct correspondences
Estimate pose via Equation 5.6

end
Construct correspondences
Estimate displacements via Equation 5.11
Update template with the displacement;

end
Algorithm 1: Our pose tracking pipeline.

are close to the plane by some threshold (20mm for our test data). The background can be

removed via depth thresholding in simple scenario. In our setup, we put a curtain on the

background and also use plane fitting to remove the background points, yet with a larger

distance threshold (200mm). In the rest of this section, we discuss the performance of both

our pose tracker.

The template mesh model we use contains 12894 vertices. The number of vertices in

the segmented input data is generally between 20K and 45K as the distance of the subject
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(d) (e) (f)(a) (b) (c)

Figure 5.5: An example showing results of our body size adaptation algorithm. In the
first row, the input mesh, template mesh and template skeletons are shown together. (a)
the initial step of the algorithm. (b) results with only pose estimation. (c) the adapted
results. Notice the improvement for the joints indicated by the arrows. The second row
compares our adapted skeleton, with the skeleton estimated by Kinect SDK [4]. (d) our
skeleton (green) and the Kinect skeleton side by side. (e) and (f) comparisons of these
two skeletons with close-up views for the legs and the feet, respectively. Discussions are
provided in the text.

from the camera changes. Our tracking system is implemented on the GPU using CUDA

and processes 40 to 60 frames per second, depending on the degree of change in pose,

i.e. speed of motion. The body size adaptation usually takes less than 100ms to converge

and is only performed during initialization. The overall tracking quality is shown in our

supplemental video.

In Figure 5.4, we show two representative examples of our surface adaptation results.

Notice that when the subject is far away from the camera, and the captured geometry does

not reflect the true body shape, our method will only attempt to fit to the observation and

cannot overcome this limitation of the sensor. In our accompanied video, the consistency

of the adapted template and the captured surface can be visually checked, which we believe

is in general sufficient for our application.

Similarly, our body size adaptation algorithm can effectively capture the user’s body

size as shown in Figure 5.5. Our pose tracker can correctly align the template and the
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Figure 5.6: A failure case for our pose tracking. The torso of the template (right) it not
properly rotated to fit to the input surface (middle). In addition, the right arm is problematic
as well due to lack of constraint.

observation in the calibration pose (from (a) to (b)), despite of the actual pose difference.

Secondly, as highlighted with the arrows in Figure 5.5(b) and (c), the refined arm joints

are closer to their true positions, meaning the arms are properly scaled to fit to the user’s

body size. The second row compares our results with the skeletons estimated by the Kinect

SDK [4]. As we can see from the close-up views in (e) and (f), our estimated joints more

properly reflect the true joint locations, for example of the feet.

More evaluations are presented in Section 8.1, where this pose tracking component is

combined with a cloth simulation engine to deliver a realistic Virtual Try-On system.

5.6 Limitations and Conclusion

Due to the inherent ambiguity for pose tracking using monocular data, as well as the local

nature of our tracking method, our tracker could fail in some situations. One such case we

observed is torso rotation while the body is only partially observed (Figure 5.6). With such

a severe occlusion, the point matching is ambiguous because the torso (the majority of the

visible parts) is close to a cylindrical shape. To solve this issue, one option is to predict the
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pose with some motion model as in [51]. Another limitation is the lack of constraints for

invisible parts, as also can be seen from the right arm of the template in Figure 5.6. Our

visibility constraint can deal with it in most cases, however a more sophisticated approach

might be to incorporate the free space constraint [53] into our framework. The algorithm

presented in Chapter 6 improves this technique through probabilistic correspondences as-

sociation and is less sensitive to local minima.
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Chapter 6 Real-Time Model-based Pose and Shape Estimation with Probabilistic

Correspondences Association

In this chapter, we present a novel (generative) articulated pose estimation algorithm that

does not require explicit point correspondences and captures the subject’s shape au-

tomatically during the pose estimation process. This algorithm relates the observed data

with our template using Gaussian Mixture Model (GMM), without explicitly building point

correspondences. The pose is then estimated through probability density estimation under

articulated deformation model parameterized with exponential maps [23]. Consequently,

the algorithm is less sensitive to local minima and well accommodates fast and com-

plex motions. In addition, we develop a novel shape estimation algorithm within the same

probabilistic framework that is seamlessly combined with our pose estimation component.

Our pose tracker uses a skinning mesh model as template as introduced in Chapter 3.

Specifically, the template consists of four components, the surface vertices V = {v0
m|m =

1, · · · ,M}, the surface mesh connectivity F , the skinning weights A and the skeleton. The

goal of pose estimation is to identify the pose Θ, under which the deformed surface vertices,

denoted as V(Θ) = {vΘ
m|m = 0, · · · ,M}, best explain the observed point cloud X = {xn|n =

1, · · · ,N}.

6.1 The General Probabilistic Model

Our algorithm assumes that the observed point cloud X follows a Gaussian Mixture Model

(GMM) whose centroids are the deformed template verticesV(Θ). Similar to [89], an extra
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uniform distribution is included to account for outliers. Therefore, the probability of each

observed point xn ∈ X can be expressed as

p(xn) = (1−u)
M∑

m=1

p(vΘ
m)p(xn|vΘ

m) + u
1
N

(6.1)

p(xn|vΘ
m) =

1
(2πσ2)d/2 exp

(−‖xn− vΘ
m‖

2

2σ2

)
(6.2)

where d is the dimensionality of the point set (d = 3 in our case) and u is the weight of

the uniform distribution that roughly represents the percentage of the outliers in X. Here a

single variance parameter σ2 is used for all Gaussians for simplicity. Similar to [35, 89],

we assume uniform distribution for the prior, that is p(vΘ
m) = 1/M.

Under this probabilistic mode, pose estimation is cast as a probability density estima-

tion problem that minimizes the following negative log-likelihood:

E
(
Θ,σ2) = −

N∑
n=1

log
( M∑

m=1

1−u
M

p(xn|vΘ
m) +

u
N

)
(6.3)

which is normally solved iteratively using the Expectation-Maximization (EM) algorithm [40].

During the E-step, the posteriors pold(vΘ
m|xn) are calculated using the parameters estimated

from the previous iteration based on Bayes rule:

pmn ≡ pold(vΘ
m|xn) =

exp
(
−‖xn−vΘ

m‖
2

2σ2

)
∑M

m=1 exp
(
−‖xn−vΘ

m‖
2

2σ2

)
+ uc

(6.4)

where uc =
(2πσ2)d/2uM

(1−u)N . During the M-step, the parameters are updated via minimizing the

following complete negative log-likelihood (upper bound of Equation 6.3):

Q
(
Θ,σ2) = −

∑
n,m

pmn
(
log

(1−u
M

p(xn|vΘ
m)

)
+ log

u
N

)
∝

1
2σ2

∑
n,m

pmn‖xn− vΘ
m‖

2 +
d
2

P logσ2 (6.5)

where P =
∑
n,m

pmn;
∑
n,m
≡

∑N

n=1

∑M

m=1
(6.6)
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So far, the probabilistic model is independent of the form of deformation model in

V(Θ). Cui et al. [35] and Myronenko et al. [89] used this model for rigid and non-rigid

point set registration. Different from their work, we derive the pose estimation formula-

tion under the articulated deformation model, which is more suitable for a large variety of

articulated-like objects (e.g., human and many animals).

6.2 The Tracking Algorithm

With the assumption of quasi-articulated motion, we again adopt the LBS deformation

model parameterized with exponential maps introduced in Chapter 3. The core of our

tracking algorithm is the combination of the twist-based articulated deformation model

with the probabilistic framework in Sec. 6.1. Substitute Equation 3.24 into Equation 6.5,

we get the following objective function (superscript ignored for notational simplicity):

Q(∆Θ,σ2) =
1

2σ2

∑
n,m

(
pmn‖xn− vm− Im∆ξg−

K∑
k=1

βm,kξ̂
′
kvm∆θk‖

2
)
+

d
2

P logσ2

=
∑
n,m

pmn

2σ2 ‖xn− vm−Am∆Θ‖
2 +

d
2

P logσ2 (6.7)

where Am =
[
Im βm,1ξ̂

′
1vm · · · βm,K ξ̂

′
Kvm

]
(6.8)

∆Θ =
[
∆ξT

g ∆θ1 · · · ∆θK
]T (6.9)

In order to solve for the parameters {∆Θ,σ2}, the partial derivatives of Q(∆Θ,σ2) over the

parameters are set to zero to obtain the following equations:

∑
n,m

pmn

σ2 AT
mAm∆Θ =

∑
n,m

pmn

σ2 AT
m(xn− vm) (6.10)

σ2 =
1

dP

∑
n,m

pmn‖xn− vm‖
2 (6.11)
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Initialize the template with previous pose
Sample a subset of points from each point set
while Pose not converged do

E-step: Compute posteriors via Equation 6.4.
M-Step:

• Minimize Equation 6.14 for (∆Θ,σ2).
• Update template vertices via Equation 3.6.

end
Algorithm 2: The pose estimation procedure.

These two equations comprise the core of our novel tracking algorithm. To better regularize

the optimization, we add the following two terms to the objective function:

Er(∆Θ) = ‖∆Θ‖2 (6.12)

Ep(∆Θ) =

K∑
k=1

(
θ

prev
k +

t∑
τ=1

∆θτk − θ
pred
k

)2 (6.13)

The term Er ensures that the solution complies with the small pose change assumption

during linearization in Equation 3.24. In Ep, {θprev
k } are the joint angles from previous

frame, and {θpred
k } are the predicted joints angles using linear third order autoregression

similar to [51]. The second term penalizes a solution’s large deviation from the prediction,

assuming relatively continuous motions in tracking scenario. This term is helpful in dealing

with occlusions, in which case the joints corresponding to invisible parts can be relatively

well constrained.

Our complete objective function is the weighted sum of these three terms:

E = Q(∆Θ,σ2) +λrEr(∆Θ) +λpEp(∆Θ) (6.14)

The partial derivative of Er and Ep over ∆Θ are added to Equation 6.10 and the entire

linear system is solved at each iteration for the pose update ∆Θ. Equation 6.11 is solved for
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the Gaussian variance σ2. After each pose update, the surface vertices are updated via the

skinning deformation in Equation 3.6. In the E-step, the posteriors are calculated according

to Equation 6.4. The procedure iterates until the maximum surface vertex movements is

below a certain threshold (1mm in our experiments). Note that the small pose update is

only enforced between two iterations, while large pose change between two frames is

allowed.

Since the computational complexity is in the order of MN, we use only a subset from

each point cloud during the optimization. For the template mesh, random sampling strategy

is used. The observed point set is uniformly sub-sampled based on the regular image grid.

The pose estimation process for each new frame is summarized in Alg. 2.

6.3 Monocular Scenario

In monocular setup, the missing data introduces additional difficulties for the algorithm

above. Specifically the algorithm attempts to use all given template vertices to fit the ob-

served data. However, since the template surface is complete while the observed surface

is partial, the observed partial surface will typically end up inside the complete template

surface (between frontal and back surfaces). An intuitive strategy is to use only the visible

part of the template from previous frame, as being adopted by Helten et al. [62]. However,

such strategy can not well handle rotation of body parts, as the visible parts will change.

Towards this end, we propose a two-step coarse-to-fine strategy to handle this situation.

In the first step, the entire set of template vertices are used for sampling, and the pose are

updated until convergence. In most cases, the body parts will be very close to their correct

places. Then the visibility of the template surface is determined and only the visible part
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begin Step One
Exclude template points outside the camera view;
Perform Alg. 2;

end
begin Step Two

Perform visibility test and exclude invisible points from the template;
Perform Alg. 2;

end
Algorithm 3: Pose estimation for monocular data.

are used to refine the pose.

Another type of missing data is the occlusion of an entire body segment, either due to

self occlusion or camera field of view limitation. By using only visible points in the second

refining step, these two issues could be partially resolve, as the joint angles of the corre-

sponding invisible parts will not be updated. However, they might still be affected during

the first step. Therefore, we limit our sampling candidates to the set of template vertices

inside the camera view. Besides, we rely on the autoregression prediction in Equation 6.13

to constraint the occluded parts that are inside the camera view. With these strategies, our

algorithm can effectively and reliably estimate the pose using only one single depth camera.

The entire pose estimation procedure is summarized in Alg. 3.

6.4 Template Shape Adaptation and Initialization

The consistency of body shape (limb lengths and body part girths) between the template

and the subject plays a critical role in pose estimation. In this section, we describe our novel

algorithm for automatic body shape estimation, followed by the initialization procedure of

our tracker.
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6.4.1 Limb Lengths Estimation

In order to adjust the limb lengths of template to fit the subject, existing methods either

assume presence of a personalized template model [51] or estimate the body size before

tracking [62, 128]. We follow the later strategy because apparently it is more general.

However, our method requires neither parametric model as in [62], nor body part detectors

as in [128]. Instead, we adopt the parametrization of surface vertices on limb length scales

introduced in Section 5.3 and utilize the probabilistic model in Sec. 6.1 to estimate the

optimal body size.

The adjustment of the limb lengths are achieved by introducing a scale for each bone,

denoted as S = {sk}. The idea of our limb lengths adaptation is to estimate the scales, such

that the vertices of the scaled template defined in Equation 5.14 maximizes the objective

function defined in Equation 6.7. Therefore, substitute Equation 5.14 into Equation 6.7 and

change the unknown from pose to the scales, we obtain the following objective function

for limb length scales estimation:

Q(S) =
∑
nm

pmn

2σ2

( K∑
k=1

ρmkskdk +ηm + gr − xn
)

(6.15)

Again, setting the partial derivatives of the above objective function over the scales to zero

yields:

∑K

j=1

( 1
σ2 dT

k d j

∑
n,m

pmnρm jρmk
)
s j =

dT
k

σ2 ·∑
n,m

pmnρmk(xn−ηm− gr); k = 1, · · · ,K (6.16)

As in Section 5.3, we further enforce consistency of the estimated scales for a set of
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while Scales not converged do
Estimate pose Θ using Alg. 3;
Calculate the joints {gk, gr} and {dk} from Θ;
Compute {ηm} according to Equation 5.12;
Estimate scales S via Equation 6.16 and Equation 6.17;
Update the template with the scales S

end
Algorithm 4: Limb lengths estimation procedure.

joints pairs in order to assure a reasonable overall shape of the scaled template:

λsωi, jsi = λsωi, js j; < i, j >∈ B (6.17)

Here the global weight λs leverages the relative importance of this regularization term

with respect to the data term in Equation 6.16, and ωi, j represents the relative strength of

the similarity for the pair (si, s j) among others. For human and animals, we set ωi, j = 1 for

symmetric parts (e.g left/right arm) and 0.5 for connected bones. Combining Equation 6.16

and Equation 6.17, we can solve for the scales so that the template is best fit to the observed

points under our probabilistic model.

Notice that the parametrization in Equation 5.14 requires unchanged pose. However,

before the template is appropriately scaled, the pose might not be well estimated. There-

fore, we iterate between pose estimation and scale estimation until the estimated scales

converge. The procedure is summarized in Alg. 4. The effectiveness of our template limb

length adaptation is illustrated in Figure 6.7 and our supplemental video.

6.4.2 Geometric Shape Adaptation

Besides limb length adaptation, we further develop an automatic method to capture the

overall geometry of the subject directly inside the pose estimation process, which does
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not require the subject to perform any additional specific motions as in [62]. The key

insight is that upon convergence of pose estimation, the maximum of posteriors p(vm|xn)

over all {xn} naturally provide information about the point correspondences. Moreover,

the corresponding posteriors can serve as a measure of uncertainty. With a sequence of

data, we can treat each such correspondence as an observed samples of our target adapted

surface vertex v̂m. Consequently, the weighted average over all the samples can be used to

represent our adapted template:

v̄m =
∑

f
ω(x f

(m))x f
(m)

/∑
f
ω(x f

(m)) (6.18)

where x f
(m) is the correspondence identified via maximum of posteriors at frame f . The

weight ω(x f
(m)) is designed to take into account both the uncertainty based on the posterior

and the sensor noise based on depth, and is defined as follows:

ω(x f
(m)) = p(vm|x

f
(m))

/
[x f

(m)]
2
z (6.19)

where the quantity [·]z denotes the z (depth) component.

In order to ensure smoothness of final adapted surface and to further handle noises,

we allow the movement of a surface vertex only along its original normal. Consequently,

a displacement dm is estimated for each vertex vm, by optimizing the following objective

function:

Ed =

M∑
m=1

(
ωm

∥∥∥∥dmnm− (v̄m− v0
m)

∥∥∥∥2
+λd

∥∥∥∥dm

∥∥∥∥2)
+λe

∑
<m,l>∈F

∥∥∥∥dm−dl

∥∥∥∥2
(6.20)

where the weight ωm = 1 if the vertex has correspondence up to the current frame and 0

otherwise. The first term moves the vertex to the projection of the weighted sum defined in

Equation 6.18 on the normal nm. The second term penalizes large movements and the third

68



www.manaraa.com

one enforces smoothness between connected vertex pairs. In our implementation, we prune

correspondences based on euclidean distance in each frame to remove noises, and perform

this adaptation only every L (L = 5 in our experiments) frames because nearby frames in

general provide little new information.

6.4.3 Template Initialization

As opposed to most existing methods that require prior knowledge of initial pose, our

method can handle large pose variations. In general, our tracker only requires knowledge

of the rough global orientation of the subject, for example, whether the subject is facing

towards the camera or to the left, etc. The local configuration of each limb can be effectively

derived using our tracking algorithm in most cases. Please see our supplemental materials

for examples. For pose tracking applications, the limb length estimation process described

in Sec. 6.4.1 is performed using the first F frames (F = 5 in our experiments), as it requires

repeated pose estimation and is relatively more time-consuming. Notice that the algorithm

favors all segments of the articulated object being visible, as the scales of the invisible

parts can only be estimated via the regularization term in Equation 6.17 and might not

be accurate. In addition, poses that resolves more joint ambiguities are preferred in this

process. For example, an arm bending pose better defines the length of both the upper arm

and forearm than a T-pose.

6.5 Experiments

In order to take advantage of the parallelism of the computations in our algorithm, es-

pecially the calculation of posteriors, we implement our pipeline on GPU with CUDA.
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Figure 6.1: Our novel algorithm effectively estimates the pose of articulated objects using
one single depth camera, such as human and dogs, even with challenging cases.

With our current un-optimized implementation, each iteration of our pose estimation to-

gether with geometric shape adaptation takes about 1.5ms on average, with sub-sampling

of around 1000 points for each point set. The running time is measured on a machine with

Intel Core i7 3.4GHz CPU and Geforce GTX 560 Ti graphics card. Since our algorithm

normally requires < 15 iterations in total to converge during tracking, the entire pipeline

runs at real time. In our experiments, we assume segmentation of the target subject is rela-

tively simple using depth information. Therefore, the computational time for segmentation

is not considered here.

Parameters: The parameters in our algorithm are empirically set to fixed values through-

out our experiments and are listed in Table 6.2. The only exception is the u in Equation 6.1,

which denotes the degree of noise and is data dependent. It is set to 0.01 unless significant

noises are present. Although in other related methods [35, 89], σ2 is initialized from the

input data directly, we found that such strategy generally largely overestimates the value of

σ2 and will try to collapse the template to fit the input point cloud. Different from shape

registration applications, for articulated shapes tracking, it would destroy the temporal in-

formation and introduce extra ambiguities. Therefore we use a fixed value instead. Due
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Ye et al. [31] Baak et al. [1] Helten et al.
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(a) Comparison in terms of prediction precision 

(b) Comparison in terms of marker distance errors (unit = meter) 

Figure 6.2: Quantitative evaluation of our tracker on the SMMC-10 dataset [52] with two
error metrics. Notice that in (b), although the method by Ye et al. [133] achieves compara-
tive accuracy, their reported computation time is much higher.

to the multiplier 1
σ2 in Equation 6.7, which is normally ≥ 104, the regularization terms

generally require large global weights.

Table 6.1: The three datasets we use for quantitative evaluations.

SMMC-10 EVAL PDT 

Subjects One male Two males, one 
female 

Three males, one 
female 

Data size 28 Sequences, 100 
or 400 frames each 
(~50% each case) 

7 sequences per 
subject, around 500 
frames per sequence 

4 sequences per 
subject, 1000~2000 
frames per sequence 

Motion 
complexity 

Relatively simple Moderate to complex 
(cart-wheels, hand 
standing, sitting on 
floor, etc.) 

Moderate to complex 
(jumping, sitting on 
floor, dancing, etc.) 

Ground 
truth data 

Markers Joints Joints + Transformations 
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Table 6.2: The parameter settings for our experiments.

Equation 6.14 Equation 6.17 Equation 6.20
Initial σ2 λr λp λs λd λe
0.022(m2) 1000 500 1000 1 0.1

6.5.1 Tracking Accuracy Evaluations

The accuracy of our algorithm is evaluated on three publicly available datasets, namely

SMMC-10 [52], EVAL [53] and PDT [62], that contain ground truth joint (marker) loca-

tions. A summary of these datasets is provided in Figure 6.1. Due to the discrepancy of

ground truth data format provided and joint definitions across trackers, different methods

for accuracy measurement are needed. For the SMMC-10 and EVAL datasets, we use the

same strategy as in [133]. Specifically, we align our template to one single frame and

mount the corresponding markers to our template. The markers are then transformed with

our estimated pose and directly compared with the ground truth. For the PDT dataset, we

follow the strategy described in their paper [62]. The estimated joints are transformed via

the provided transformations to local coordinate system of each corresponding joint, and

the mean of displacement vectors for each joint is subtracted to account for joint definition

difference.

Previous methods reported their accuracy according to two different error metrics, di-

rectly measurement of the euclidean distance between estimated and ground truth joints,

or the percentage of correctly estimated joints (euclidean distance error within 0.1m).

Therefore, we show our results in both ways for comparison purpose. The accuracy of

our tracker on the SMMC-10 dataset is shown in Figure 6.2. In this relatively simple

dataset, our method outperforms most existing methods, and is comparable with two recent
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Figure 6.3: Quantitative evaluations of our tracker’s accuracy with comparisons with the
state of the arts.

work [53, 128]. The comparisons on the other two more challenging datasets are shown in

Figure 6.3. The results clearly show that our method outperforms all the compared meth-

ods by a large margin. That means our approaches can handle complex motions more

accurately and robustly, while still achieves real-time performance. (The numbers for the

compared methods are reproduced from their own papers, except for the Articulated ICP

and the KinectSDK of which the numbers are obtained from [53] and [62], respectively.)

As mentioned before, our tracker well handles complex motions. The tracking results

of various complex poses from our own data and the publicly available datasets are shown

Figure 6.4: Visualization of example tracking results on the publicly available datasets.
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in Figure 6.1 and in Figure 6.4 respectively. Furthermore, visual comparisons between our

results and the skeletons estimated by KinectSDK are shown in Figure 6.5.

Non-human Subjects Our algorithm can also be applied to articulated objects other than

human beings. To demonstrate its applicability, we test on data captured from a dog. A

major challenge in this data is the severe self occlusions. Some of our results are show in

Figure 6.1 and Figure 6.6. Note that for discriminative and hybrid approaches, a database

of this animal will be needed; while we only need a skinning template. Besides, none of

existing generative methods have reported results on this type of data, except with multi-

view setup that resolves the severe occlusion [51].

6.5.2 Shape Adaptation Accuracy

To quantitatively evaluate the performance of our body shape adaptation algorithm, we

compare our results on the PDT dataset [62] with their ground truth shape data. Note that

in our pipeline, the body shapes are automatically deduced during the tracking process,

Figure 6.5: Visual comparison of our results (second row) with KinectSDK [4] (first row)
on some relatively complex poses.
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Figure 6.6: Example results of our algorithm applied to dog data.

while a specific calibration procedure is required in [62]. To measure fitting errors, we

estimate the pose of the ground truth shape using our algorithm and deform our template

accordingly. On average, we achieve comparative accuracy as Heltel et al. [62]: 0.012m

v.s 0.010m. To compare, the mean fitting error reported by Weiss et al. [129] on their own

test data is around 0.010m. It should be emphasized that [62] requires an extra calibration

procedure and [129] assumes small motion between their input, while our method directly

operates on the dynamic input. It should also be pointed out that the ground truth shapes

from [62] were obtained by fitting SCAPE models to data from scanner. Thus they do not

well capture the effects of subject’s clothing, which is captured by our algorithm through

fitting with the input data. In Figure 6.7, the effectiveness of our adaptation procedure is

visualized.

6.5.3 Application in Non-rigid Shape Registration

Since our tracking algorithm (Sec. 6.2) can robustly handle large pose variations, and our

template adaptation algorithm (Sec. 6.4) can effectively captures the body shape of the

subject, our entire algorithm can be readily used for registering a collection of shapes from

a same category of articulated objects. To demonstrate the idea, we apply our algorithm
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(a) (b) (c) (d) 

Figure 6.7: Visual results of our shape adaptation algorithm. (a) and (c) are results of
only pose estimation (male and female respectively), while (b) and (d) are results with
shape adaptation during tracking. Input meshes are overlaid on each result. Notice the
adjustment of limb lengths, in particular the arms and feet of the male subject.

to register our template to a set of human scans made available by Hasler et al. [58]. In

this process, we iteratively perform our pose estimation, limb length adjustment and sur-

face adaptation components until convergence. Note that since there is no visibility issue,

we skip the second step in Alg. 3. Throughout all the tests, we start with the identical

template (same shape and limb lengths) in T-pose. Some examples results are shown in

Figure 6.8. Despite of the large variety of poses and shapes of the subjects, our algorithm

has shown excellent performance. Note that the only requirement for initialization is the

rough global orientation of the input data, as our algorithm does not infer any semantic

information and cannot automatically resolve such large degree of ambiguity. In the case

where the limb lengths differ dramatically, for example 2m vs. 1m, a global scaling will

need to be applied first. In general, our algorithm can be used to provide accurate non-rigid

registration between shapes, and existing algorithms, such as nonrigid ICP, can be used

to further refine the registration. Moreover, the skeleton information in our template can

be naturally transferred to the new shapes after registration and automatic rigging can be

achieved automatically.
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Figure 6.8: Results of applying our algorithm for shape registration. The first row shows
the initial state (input) for our algorithm. The second row shows the overlaid shapes after
registration. Our algorithm automatically handles substantial shape and pose variations.

6.6 Conclusion and Future Work

In this chapter, we present a novel algorithm for simultaneous pose and shape estimation

for articulated objects using one single depth camera. Our pipeline is fully automatic and

runs in real time. Through extensive experiments, we have demonstrated the effectiveness

of our algorithm, especially in handling complex motions. In particular, we have shown

results of tracking an animal, which have not been demonstrated in previous methods with

monocular setup.

Our pose tracker could be further improved, for example by taking into account free

space constraints as in [53]. Besides, the computational complexity can be greatly reduced

through fast Gauss transform during computation of the posteriors [89]. A future direction

for exploration is a scheme for adaptive limb lengths estimation along with pose estimation,

instead of simply using the first few frames, which usually does not provide complete

desired information.
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Chapter 7 Dynamic Human Avatar Reconstruction

Our previous methods are only capable of recovering the overall shape of the subject with-

out rich geometric details, which require more sophisticated 3D reconstruction procedure.

3D shape reconstruction is a challenging task that has been extensively studied for decades

due to its vast applications. High quality reconstruction can be achieved using surround-

ing cameras [38, 121]. However, such setup requires careful calibration and is not widely

available. By contrast, a monocular setup is highly preferred in various real-life applica-

tions. The availability of low cost commodity depth sensors, such as Microsoft Kinect, has

made static scene modeling substantially easier than ever [91]. However, the limitation to

static scene prevents broader applications in which the scene or the subject may move and

deform.

Researchers have been exploring ways to accommodate deformable objects for decades.

Successes have been made using color cue to track the motion and then reconstruct shapes [10,

79]. Nonetheless, it is well known that color cue is sensitive to illumination and view

changes. Alternatively geometric information, if made available, could be more robust

and has been successfully adopted for shape matching and reconstruction. Under the case

of small motions, promising results can be achieved using off-the-shell low cost depth

sensors [34, 78, 129]. Using high quality input, articulated motions can also be accommo-

dated [28]. However, to the best of our knowledge, no existing method can achieve quality

shape reconstruction using dynamic input from a single low cost depth sensor. As the pop-

ularity of these sensors rapidly grows, methods that can be used for shape reconstruction
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Figure 7.1: Taking a dynamic sequence (moving subject + potentially moving camera) as
input , our method automatically selects a sparse subset of frames (left) that contains rela-
tively rich and reliable geometric information and reconstructs a quality watertight model
(middle left). The reconstructed model is animatable and can be used for various inter-
esting applications, including pose manipulation (middle right) and space-time resolution
enhancement for 3D videos (right).

without posing strict deformation requirements are desired.

In this chapter, we present a system with several novel components that can effectively

reconstruct the shape of a moving quasi-articulated entity, such as human, using one single

Kinect sensor. We use our probabilistic model-based tracker [134] (Chapter 6) to estimate

the poses of the subject. From the tracking information, we develop an automatic frame

selection scheme that selects only a sparse subset of key frames with relatively rich and

reliable observations. Our system then aligns these key frames to a common reference

pose with the assistance of our generic template. The key frames are then globally aligned

and combined for shape reconstruction. We choose not to use the entire sequence since

registering all of them is both computationally expensive and technically fragile, and typi-

cally leading to overly smoothed output. A proxy model is first reconstructed based on the

initially aligned key frames and is then used to guide further refinement of key frame align-

ment. Moreover, to reduce the chance of losing captured details, we develop an adaptive

part selection strategy that prunes unreliable observations from each key frame before us-

ing them for reconstructing a watertight model. Figure 7.9 shows the outputs of the various
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Figure 7.2: A single mesh from the SCAPE database is rigged and skinned and used as
the template for our pose estimation. The mesh is segmented into sub-regions for coverage
estimation. Each of the right two images shows sub regions without overlap. We use a
combination of these two segmentations.

steps of our system. Compared to the current state of the art in single-sensor modeling, our

system is much more user-friendly: a user can simply move/turn in front of the camera to

create her own posable avatar. Our “scanning-by-part” approach allows the user to move

closer to the camera to take advantage of the high-lateral and depth resolutions these depth

cameras offer in near range, leading to more details in the final model. Figure 7.1 shows

an example of our reconstructed model as well as different applications of this animatable

model.

The two major components of our system, namely automatic key frame selection and

global alignment are described in Section 7.1 and Section 7.2, respectively. We validate our

method through the experiments presented in Section 7.3 and conclude with discussions of

some limitations of our method in Section 7.4.
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7.1 Confidence-based Frame Selection

Our method starts by selecting a sparse subset of effective frames out of the entire depth

sequence. Due to the lack of semantic information from the raw input, we achieve this by

leveraging the semantic information from a generic template model. Specifically, we use

our probabilistic model-based pose tracker [134] to estimate the pose of the subject. Body

part information is then identified, along with reliability measure of the observed surface

in each frame, which are later used for key frame selection. For pose tracking, the generic

skinning mesh, as shown in Figure 7.2, is used as the template.

There are several desired properties for the set of key frames. First of all, they should

provide maximal coverage over the part of subject’s body that is observed in the sequence.

Secondly, they should capture as rich details as possible. Based on the property of depth

sensors, frames captured at near range are favored as a consequence. As our method relies

on the output of the pose tracker, the third requirement is high confidence on the estimated

pose, i.e. low pose error. Last but not the least, we would like to favor frames with small

motions compared to nearby frames in order to avoid large noise caused by motion blur. In

the rest of this section, we describe in detail our evaluation of the reliability for each input

frame followed by our strategy of frame selection.

7.1.1 Confidence Evaluation

Aimed at quasi-articulated objects, we consider the reliability in a per-part fashion. Due to

the occlusion in the monocular data, a single rigid part is almost never completely observed.

Therefore, we divide each part of the template into several sub regions and evaluate the
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reliability for each sub region for each input frame. Small sub regions will provide more

accurate evaluation, for example for the degree of details, however, will very likely result in

substantially more key frames being selected. We experimentally found that dividing each

rigid segment into 6 overlapping sub regions, as shown in Figure 7.2, is a good balance.

The sub regions are designed to share large overlaps in order to ensure partial overlaps

between frames that are required in the non-rigid alignment described in Section 7.2. In

the rest of the paper, we denote each sub region as Rk,k ∈ [1, · · · ,K] and the corresponding

vertex indices as Ik = {i|ui ∈ Rk}, where ui is a vertex on the template. In the following,

we describe the exact formulation of the confidence measure for each sub region in each

frame based on the criteria mentioned earlier.

Coverage Confidence

For each frame t, the visibility of each vertex ut
i on the aligned template is determined. We

then use the ratio of visible points for each sub region as the coverage confidence value (| · |

denotes the cardinality when used on a set throughout the paper):

ct
c(k) =

∣∣∣∣{ut
i|i ∈ Ik,ut

i is visible}
∣∣∣∣∣∣∣∣{ut

i|i ∈ Ik}
∣∣∣∣ (7.1)

Geometric Details Confidence

The level of details of a sub region contained in a frame is evaluated through both its

distance and motion. The inverse of the average distance of the sub region can serve as a

straightforward measure of the score in terms of distance:

ct
d(k) =

1/
∑

i ut
i,z

maxt
{
1/

∑
i ut

i,z
} , i ∈ Ik (7.2)
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where the value ut
i,z is the z (depth) component of the vertex ut

i. The average movement of

the surface points of the aligned template on that sub region are used to evaluate the speed

of motions. The motion-based confidence value is then defined as:

ct
m(k) = 1−

∣∣∣∣max
t

{dt
k

pk
,1

}
− εm

∣∣∣∣ (7.3)

where dt
k =

1
|N(t)||Ik|

∑
t′∈N(t)

∑
i∈Ik

||ut
i −ut′

i ||2 (7.4)

One might initially consider 1−
dt

k
maxt{dt

k}
as the motion-based confidence. However, due

to the inaccuracy in pose estimation, the maximum value maxt{dt
k} might be exaggerated,

and the normalized values will be squeezed and contain insufficient discriminative power.

Therefore, in Equation 7.3, we cut off the value at the threshold pk, which is set to be the

90% percentile of the set {dt
k}t in our experiments. The subtraction of εm in Equation 7.3

is designed to favor frames with small motions over static frames, that is, values close to

εm after normalization are preferred over 0. The reason for such consideration is to ensure

effective key frame upsampling and will be made clear in Section 7.2.2. The value of εm is

set to 0.1 throughout our experiments. The setN(t) denotes the nearby frames of t. We use

previous and next frames except for boundary frames where only the nearby frame from

one side is used.

Pose Confidence

We measure the confidence of the estimated pose via the mismatch of the projected region

in the image space between the input frame and the aligned template. Since there is no

semantic information regarding the body parts from the input frame, we compute a single

pose confidence value for each frame, instead of for each sub region or body part. The
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confidence value is therefore defined as:

ct
p = 1−

∑
i, j XOR

(
Mt

I(i, j),Mt
T (i, j)

)
∑

i, j Mt
I(i, j) +

∑
i, j Mt

T (i, j)
(7.5)

Here Mt
I is the binary mask of the input frame and Mt

T is the binary mask of the projected

region of the aligned template, while XOR(·) denotes the exclusive or operation.

Our per sub region confidence ct(k) is then a normalized product of these four individual

confidence values:

ĉt(k) = ct
c(k) · ct

d(k) · ct
m(k) · ct

p;

ct(k) =
ĉt(k)

maxt{ĉt(k)}
(7.6)

7.1.2 Frame Selection Strategy

With the per sub region confidence values determined, our method uses a greedy strategy

to select a sparse subset of key frames. A naı̈ve approach is to select for each sub region

the frame with highest score over the sequence. Unfortunately, this approach will result in

a large set of frames being selected. In the worst case, we will get as many key frames as

the sub regions.

To solve this issue, our method relaxes the strict requirement of maximum confidence

value, and treats equally the frames with confidence over a given threshold τc. Our frame

selection strategy is formalized in Algorithm 5. During the selection process, the greedy

strategy always locates the frame with maximum confidence across all sub regions that are

not marked and all frames in the frame pool, which initially contains the entire sequence.

The sub region corresponding to this maximum confidence is then marked. Additionally,
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Figure 7.3: Frames with large motion blur (right image) might be selected if {ct
m(k)} in

Equation 7.6 is excluded.

Data: Input sequence, template model, threshold τc
Result: Key frames F
Compute the confidence values {ct(k)|∀(t,k)} (Equation 7.6).
F = empty set.
P = frames indices of the entire sequence, {1,2, · · · ,F}.
K = {1,2, · · · ,K}
while K not empty do

Locate f = argmaxt∈P{ct(k)|k ∈ K};
Construct the set J = { j|c f ( j) > τc, j ∈ K};
K =K\J (set difference, same below);
P = P\{ f } ;
F = F ∪{ f };

end
Algorithm 5: The automatic frame selection strategy.

all sub regions in this frame with confidence values above the threshold τc are also marked.

The frame is removed from the pool. The process stops when all sub regions are marked.

With τ experimentally set to 0.8, this procedure normally selects 10 to 20 key frames,

as shown in Figure 7.1 and Figure 7.9. The key frames contain near range scans of different

body parts with little motion blur. It should be emphasized that if the motion-based con-

fidence measures {ct
m(k)} are excluded in Equation 7.6, closely captured frames with large

motion blur might be selected. Figure 7.3 shows an undesired frame being selected when
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the motion-based confidence measure is not considered for one of our test sequence. By

contrast, a frame with comparative quality for the particular body part (the forearms in this

case), yet with almost no motion blur, will be chosen instead by our method. Therefore,

our motion-based confidence measure is essential for reliable key frame selection.

7.2 Template Guided Key Frame Merging

The second major component of our pipeline is a merge of the selected frames into a

consistent, complete model. In most cases, the subject is under very different poses across

the key frames as shown in Figure 7.9. Therefore, it is, in general, very difficult to localize

reliable color-based features across the key frames to assist the alignment. In addition, the

severe missing data, due to both self-occlusions and limited camera field-of-view, make it

even more challenging to identify reliable 3D geometric features. Therefore, methods that

rely on feature matching across frames, e.g. [10, 28, 79], cannot be directly used in this

case. Moreover, pair-wise alignment is also not preferred due to two reasons. First of all,

the number of non-rigid pair-wise alignment will be the square of the number of key frames,

resulting in a considerable time-consuming process. Secondly and more importantly, the

overlap between key frames might not be consistent over the entire body. Consequently,

the outcome of the alignment in areas with little or no overlap will be unpredictable.

To resolve the issue, we rely on the aligned template to guide the key frame alignment.

Similar to many other methods, such as [28, 78], we achieve this in two stages, namely

initial and global alignment. During the first stage (Section 7.2.3), we deform each frame

to a reference pose according to the aligned template, and perform refinement by rigid

alignment of discriminative parts. The second stage aims at merging the roughly aligned
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meshes. Due to the potentially small overlap across different key frames, we further divide

this stage into two steps. Firstly, a proxy model is created by fusing the roughly aligned

meshes from the first stage via Poisson Reconstruction [71]. All selected frames are aligned

towards the proxy model, while the proxy model is actively updated after each alignment.

The second step is a global non-rigid alignment as used in [78].

The quality of the merged complete model directly relies on the quality of each key

frames. Even though our key frames are selected in a way that favors rich details, the

noise of commodity depth sensors makes their quality substantially lower than desired.

Following the idea of KinectFusion [91], we fuse multiple nearby frames together to obtain

an upsampled scan for each key frames. However, in our case, we should perform non-rigid

alignment, rather than rigid alignment. Since our non-rigid alignment technique is based

on the Embedded Deformation Model (EDM) [77, 113], we will first briefly describe the

formulation of the EDM as well as our extension in Section 7.2.1 and then present the

details of our alignment framework in the remainder of this section.

7.2.1 Embedded Deformation Model

The Embedded Deformation Model uses a simplified version of a mesh as a control mesh

(deformation graph) to deform the original one. The underlying assumption is that a local

small region is close to a plane, and therefore its motion can be represented via only a

few nodes. Denoting the set of nodes in the deformation graph as X = {xi}
N
i=1, each vertex

vi ∈ V of the original mesh is deformed by its L controlling nodes as follows:
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Φ(vi) = Rg
( L∑

j=1

wi j[A j(vi− x j) + xi + b j]
)
+ tg (7.7)

where [Rg tg] is the global rigid transformation, and [A j b j] is the local affine transforma-

tion of node x j. The weight wi j defines the influence of node x j on vertex vi, subject to∑
j wi j = 1,∀i.

To deform a mesh to align with a target mesh, a weighted sum of the following three en-

ergy terms are iteratively minimized to estimate the deformation parameters {Rg, tg,A j, b j}:

E f =

M∑
i=1

ω2
i

(
||Φ(vi)− ci||

2
2 +ρ|nT

i (Φ(vi)− ci)|2
)
; (7.8)

Er =

N∑
i=1

||AT
i Ai− I||2F (7.9)

Es =
∑

(i, j)∈E

µi, j||Ai(x j− xi) + xi + bi− (x j + b j)||22 (7.10)

Here {ci,ni} is the closest point and its normal on the target mesh with respect to Φ(vi)

(vi deformed with the most up-to-date deformation parameters). The weight ωi controls

the confidence of the correspondence and ρ leverages the relatively importance between

the point-point metric and the point-plane metric. The first term drives the mesh toward

its target. The second term minimizes the non-rigidity of the local transformation and

prevents arbitrary surface distortion (I is the identity matrix). The last term serves as the

smoothness term and assures the similarity of the local transformations between connected

nodes weighted by {µi, j} (E is the set of edges in the deformation graph).

We extend the original EDM in two ways, in order to better accommodate the artic-

ulated motions of the object. First of all, we utilize the skinning information encoded in

our template to adapt the weights µi, j used in Equation 7.10. The basic idea is to enforce
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Figure 7.4: The original input meshes and our upsampled meshes. The upsampled meshes
are smoother, contain more reliable geometric information, have small holes filled both
through fusion with nearby frames.

relatively small smoothness constraint at regions with potential large deformation. There-

fore, the deformation model will allow relatively large flexibility at non-rigid region, while

enforcing strong smoothness in almost rigid part. Specifically, we set

µi, j =
µ̂i, j

max(i, j){µ̂i, j}
; where µ̂i, j =

1
||si− s j||2 + εs

(7.11)

The vector si contains the skinning weights of the vertex on the aligned template that is

closest to the point vi in the input mesh. The parameter εs controls the upper bound of the

unnormalized weights and is set to 0.5.

Our second extension comes in the form of an extra energy term, aiming at preserving

the edge length of the deformation graph:

Ee =
∑

(i, j)∈E

(
||Φ(xi)−Φ(x j)||22− ||xi− x j||

2
2

)2
(7.12)

We found this extra term useful in preventing collapsing in the case of small overlap. There-

fore, our extended energy function for EDM is as follows:

E = λ f E f +λrEr +λsEs +λeEe (7.13)
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where λ f = 10,λr = 1000,λs = 100 and λe = 1000 are used throughout our experiments.

The deformation parameters are optimized via the Levenberg-Marquardt algorithm. Due

to the large number of vertices in the input mesh, we normally sample a subset to use in

Equation 7.8. In our implementation, we use the mesh simplification technique in [54] to

generate both this subset and the deformation graph.

7.2.2 Key Frame Upsampling

The purpose of the upsampling is to improve the quality of the selected key frames. We

achieve this by fusing information from nearby frames. Specifically, for each key frame,

we align several nearby frames (6 in our experiments) towards it via Embedded Deforma-

tion Model and then perform volumetric fusion as in [91]. Our motion-based confidence

defined in Section 7.1.1 ensures small motions around key frames and consequently large

overlaps for EDM to align well. In our motion-based confidence definition, one of our

criteria was to favor frames with slight motion over no motion. Because when the scene is

almost static with respect to the camera, the range maps captured using Microsoft Kinect

sensor provide almost identical measurements. In this case, the key frames cannot be ef-

fectively upsampled. Therefore, in general we favor frames with slight motions that would

provide extra measurement information. Figure 7.4 demonstrates the effectiveness of this

upsampling step. The upsampled key frames serve as the input for the later stages of our

pipeline.
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7.2.3 Template Guided Initial Alignment

During our initial alignment, all key frames are deformed to a reference pose that could be

pre-defined or an estimated pose from any captured input. For each vertex on the aligned

template, a rigid transformation can be calculated that transforms it to the target position in

the reference pose through Linear Skinning Blending (LSB). A naı̈ve approach is to deform

the input mesh using both the skinning weights and the rigid transformation of its closest

point on the aligned template. However, as shown in Figure 7.6, this simple approach could

result in substantial artifacts.

Alternatively, we refine the target vertex positions determined by LBS and rely on EDM

to refine the deformation parameters with a proper initialization. This is achieved in three

steps. First of all, we refine the mesh deformed using LBS through globally alignment of

discriminative body parts. The idea is to globally align certain rigid sub parts across all

frames to improve the consistency using the technique proposed in [98]. The body part in

the key frame is identified by simply transferring the semantic part information from the

aligned template using nearest neighbor strategy. However, not all sub parts are sufficiently

discriminative for reliable global alignment. For human subject, we perform the global

alignment only on the head and the torso. A typical example of this refinement is shown in

Figure 7.5. Afterwards, we deform the mesh from LBS through Laplacian warping [108]

using the vertices on the discriminative parts as control points.

In the second step, we use the rigid body transformation of the closest point of each

node (xi) of the deformation graph to initialize the EDM deformation parameters ({Rg, tg,Ai, bi})
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(a) Before Global Part Alignment (b) After Global Part Alignment

Figure 7.5: A typical example of the improvement through the global alignment of dis-
criminative body parts.

according to the following relationship:
[Rg tg] = [Rs

g t s
g]

Rs
gAi = Rs

i
Φ(xi) = Rs

i xi + t s
i

⇒


[Rg tg] = [Rs

g t s
g]

Ai = (Rs
g)T Rs

i
bi = (Ai− I3)xi + t s

i

(7.14)

Here {Rs
i , t

s
i } are the body space transformation of the closest point and {Rs

g, t s
g} are the

global transformation of the template, both from the key frame pose to the reference pose.

During the third step, we use the target positions from first step as the fixed correspon-

dences (the {ci} in Equation 7.8) and use EMD to estimate the deformation parameters.

Since not all of these correspondence are reliable due to noises, we further prune them by

removing those on edges with length changes or on faces with area changes over a certain

percentage.

An example of a key frames deformed using various strategies is shown in Figure 7.6.

Our result suffers from substantially less artifacts compared to the one using naı̈ve approach

above or the one without proper parameter initialization. This example demonstrates that

a proper initialization of the deformation parameters are necessary, due to the potentially

large pose difference between the key frames and the reference pose.
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A Key Frame Aligned 
to A Reference Pose

EDM without 
proper initialization

EDM with our 
proper initialization

Naive Skinning 
Transfer

Figure 7.6: An upsampled key frame aligned to the reference pose with our approach is
shown on the top left. Close-up views of the two circled regions for various alignment
approaches are shown to demonstrate the effectiveness of our template guided initial align-
ment. Some problematic regions produced by the alternative approaches are highlighted
by green rectangles.

7.2.4 Global Non-rigid Alignment

A wildly used strategy for global alignment, both rigid and non-rigid, starts with identifying

correspondences between pairs with potential overlap and then simultaneously estimate the

deformation parameters for all inputs based on the correspondences [28, 78]. Ideally, we

would construct the correspondences from the output of our initial alignment. Nonetheless,

the inaccuracy in the initial alignment makes such correspondences unreliable.

To resolve this issue, we propose to first construct a proxy model from the initially

aligned key frames, and then perform non-rigid alignment for each key frame towards this

proxy model to better identify correspondences. Specifically, we use Poisson Reconstruc-
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The Proxy 

Model

Without Adaptive 

Part Selection

With Adaptive 

Part Selection
Close-up views

Figure 7.7: An example of our proxy model and two models reconstructed with and with-
out our adaptive part selection scheme. The over-smoothed proxy model is only used to
assist our global alignment. The close-up views of the two reconstructed models show that
some geometric details are corrupted when all key frames are used for reconstruction. By
contrast, the adaptive part selection scheme reduces the chance of loosing details.

tion [71] to build a water tight model using all the initially aligned key frames. Due to some

misalignment, the reconstructed model might have bumpy surfaces. Therefore, we perform

strong smoothing on the reconstructed model to obtain our proxy model. An example of

our proxy model is shown in Figure 7.7. Afterwards, all key frames are aligned towards

the proxy model using EDM, taking the deformation parameters estimated in Section 7.2.3

as the starting point.

However, cares need to be taken during the process. If all key frames are independently

aligned towards the proxy model, the geometric information from an aligned key frame will

not affect the alignment of the others and we might achieve little to no improvement. In-

stead, frames with overlap should maintain consistent alignment towards the proxy model.

We tackle this by determining an alignment order in which two consecutive key frames that

will be aligned to the proxy model have minimum non-overlap, and updating the proxy

model with aligned key frames in an incremental way. Here the minimum non-overlap

94



www.manaraa.com

criteria is used instead of maximum overlap because a frame with maximum overlap with

aligned key frames might also have parts with no overlap, of which the alignment will be

unpredictable.

The determination of alignment order again works in a greedy-like fashion as formal-

ized in Algorithm 6, based on the confidence measure defined in Section 7.1.1. The first

frame in F (see Algorithm 5), denoted as f0, is selected as the first frame. Then the frame

with minimum sum of confidence values for the sub regions that are not covered up to this

point is chosen as the next frame, until all frames are selected. In our experiments, we

set the parameter εα = 0.3, which can be interpreted as the lower bound for the confidence

value of a sub region that will be considered as well covered. To update the proxy model

after a key frame is aligned, for each vertex νi on the proxy model, the intersection along

its normal with the aligned key frame is located, denoted as ai. Then a weighted average

is calculated as ν′i = (wp
i νi +wa

i ai)/(w
p
i +wa

i ), and the weights are updated as wp
i = wp

i +wa
i .

For simplicity, we set wp
i = 0 initially and wa

i = 1 for all key frame vertices. One could

further explore uncertainty in the key frame vertices to set the weights, for example as in

VRIP [36].

After all key frames are aligned to the proxy model, we identify correspondences be-

tween each pair of key frames. We then use the approach proposed in [78] extended by

incorporating our edge length energy term Ee in Equation 7.12 to simultaneously deform

and align all key frames. The edges are constructed by searching for a certain number (4 in

our implementation) of nearest neighbors for each selected point of a key frame in the cor-

respondence pool and pruning pairs with closest points on the template lying on different

body parts.
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Data: {ct(k)} and F (see Algorithm 5) and a parameter εα.
Result: Ordered key frames F̂ .
Initialize F̂ = { f0};F = F \{ f0};rk = c f0(k) ≥ εα,∀k ∈ [1, · · · ,K].
while F not empty do

for ∀t ∈ F do
αt =

∑K
k=1 ct(k)(1−δ(rk)), where δ(·) is an indicator function.

end
Locate f = argmint∈F {α

t};
F = F \{ f }; F̂ = F̂ ∪ { f } ;
rk = 1, where c f (k) ≥ εα,∀k ∈ [1, · · · ,K];

end
Algorithm 6: Our greedy strategy to determine the order of aligning the key
frames to the proxy model.

At this stage, the final step of building a water-tight model might be performed using

the aligned key frames. However, taking all of them into consideration for all body parts

might result in certain loss of details. The reason is that a frame with relatively high quality

scan on one body part might, and in fact usually will, suffer from low quality for some other

body parts. Therefore we propose an adaptive scheme, again based on the confidence val-

ues, to select the confident body parts of each key frame for the final model reconstruction.

Specifically, for each sub region defined earlier, we select two frames with highest confi-

dence values and then keep the entire body part corresponding to the sub region for both

frames based on the body part information transferred earlier from the aligned template.

Now each key frame might have a sub set (typically not all) of the scanned surface that

has relative high fidelity. After our adaptive selection step, we apply Poisson Reconstruc-

tion [71] to build our final water-tight model. The comparison between results with and

without our adaptive selection is shown in Figure 7.7. Even though the improvement might

not be significant, this adaptive scheme not only introduces little overhead when determin-

ing the confident sub parts, but also reduce the amount of data used for final reconstruction
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0 > 10mm
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(mean = 4.2mm)Ground Truth Our Result
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Figure 7.8: Quantitative evaluation of our method on a mannequin under different poses.

and consequently the computational time.

7.3 Results

To validate our approach, we conduct both quantitative and qualitative evaluations, on a

mannequin and several subjects with various body shapes and apparels, respectively.

7.3.1 Quantitative Evaluations

We use the mannequin shown in Figure 7.8 to measure our reconstruction error. Different

from [78] whose mannequin is static, we articulate the arms of our mannequin in different

positions to synthesize various subject poses. We then capture a set of depth maps for each

pose with slight view changes and perform our key frame upsampling to obtain a relatively

high quality input. Totally 12 key frame image sets are captured, among which four of

the upsampled key frames are shown in Figure 7.8. We then compare our reconstructed

output with a model acquired using a structured light scanner with 1mm accuracy [74]. To
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align these two models, we estimate the body pose of the ground truth model and use it

as the reference pose. Both the ground truth and our reconstructed model, as well as the

error plot, are shown in Figure 7.8. On average, the error is less than 5mm. Notice that

one area with major errors is the head, which is in fact partially due to the slight head

pose difference between the ground truth and the reconstructed model caused by our pose

estimation inaccuracy. Though our accuracy is slightly lower than that of [78], it should be

emphasized that we consider pose variations while their quantitative evaluation is based on

completely static model.

7.3.2 Human Subject Examples

For our experiments on real data, the subjects are asked to move in front of the camera per-

forming various motions. We consider both static camera and moving camera scenarios.

When the camera is static, we normally split the data acquisition into two phases by posi-

tioning the camera on the top and on the bottom to capture different regions of the subject’s

body in close range. However, this is not a requirement as our frame selection scheme

will automatically select the optimal subset of frames regardless of the camera position. In

the case of moving camera, the camera continuously changes the location and orientation

while the subject is also moving, for example turning himself/herself. (The input videos of

these subject data are provided in our supplemental video.)

Figure 7.9 shows our results on four different subject data with various body sizes,

apparels and motion complexities. The first three are captured with a static camera and the

last one is captured with a moving camera. The first row demonstrates that our key frame

selection scheme successfully selects a sparse subset of frames that provide close-range
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measurement of the majority of the body. With our template guided initial alignment, all

the key frames are roughly aligned in the reference pose as presented in the second row.

We use a default pose as reference for all these experiments, though it could be rather

arbitrary. The results after our global alignment in the third row clearly demonstrate the

improvement over the initial state. The reconstructed models presented in the fourth row

successfully preserve the surface details with only small artifacts.

We use a simple strategy to colorize the model. For each point on the model, intersec-

tions along its normal direction with all the globally aligned key frames are calculated. The

colors of the intersection points are obtained via linear interpolation on the corresponding

triangle. The median among the colors of the intersection points is assigned to this model

point. For the model points with no intersection with any key frames, the colors are hal-

lucinated through Poisson Blending. The colorized models in the last row of Figure 7.9

shows that this simple strategy produces visually pleasing results. Small artifacts might be

observed when there are dramatic illumination changes for some body part, for example

the back of the forearms of the third model is slightly brighter than other areas. A more

sophisticated technique [19] can be used to achieve more consistent texture reconstruc-

tion [78].

It should be pointed out that for the second subject, the back of both arms are not ob-

served during the entire sequence due to self occlusion. In fact, such phenomenon is not

rare when the subject attempts to remain in the same pose during the scanning. Although

the unobserved areas still can be reconstructed, as is also shown in our results, the halluci-

nation normally produces only a smooth surface. Therefore, it further supports the desire of

allowing the subjects to move during the scanning as well as the advantage of our method
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Total 969 Frames
13 selected

Total 1093 Frames
15 selected

Total 1364 Frames
17 selected

Total 1470 Frames
15 selected

Figure 7.9: Our results on four different subject data. For each example, the set of automat-
ically selected key frames are shown on the top (Section 7.1). The second row shows the
key frames with our template guided initial alignment (Section 7.2.3). The globally aligned
key frames are in the third row (Section 7.2.4). The final water-tight models without and
with coloring are shown in the last two rows.

100



www.manaraa.com

Our Result Kinect Fusion Shapify

Kinect Fusion (Static) Shapify.me (Static)Our Result (Dynamic)

Figure 7.10: A visual comparison of our result dynamic input with models scanned using
KinectFusion and Shapify.me with the subject holds static.

in this regard.

7.3.3 Comparisons

Most existing methods for shape scanning require the subject to remain as static as possible.

To the best of our knowledge, no existing methods can effectively reconstruct a high quality

complete 3D model from a dynamic depth video. The work by Chang and colleague [28] is

one of few approaches that can accommodate articulated motions. However, they require

high quality input and can not produce proper reconstruction if directly applied to data from

commodity depth cameras, even with super-resolution, as shown by Cui et. al [34]. To

shed some light on how our reconstruction quality is compared to existing shape scanning

methods, we use two selected methods to scan one of our four subjects when she holds still

during the acquisition process.

The two methods we compare, as shown in Figure 7.10, are KinectFusion [91] and

Shapify.me [7]. The KinectFusion scan shown in Figure 7.10 only contains the frontal part
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of the subject, because it is very tedious and difficult to scan a whole person without getting

into unacceptable drifting. Shaify.me is an implementation of the system proposed in [78].

During our tests, it provides smooth model, yet less details than ours.

7.3.4 Computational Performance

The majority components of our approach are implemented using Matlab. Figure 7.11

provides a detail breakdown of the computational cost of each major component in our

pipeline. The most time consuming part is various non-rigid alignment steps using EDM

as expected. With 15 key frames, it takes about three to four hours. In our experiments, our

deformation graphs normally have around 1500 nodes, each with 12 deformation param-

eters. Therefore, we are optimizing for a total of over 270K parameters during the global

non-rigid alignment. Besides, consider the amount of motion in our input, we believe the

time performance is acceptable. Moreover, the implementation can be further optimized

with C/C++ or even CUDA for speedup.

Key Frame Selection
and Upsampling

Non-Rigid Alignment

Selec
tion

Nearby Frame
Alignment

Fusion Initial Stage Global Stage

0.67s 183s 47s Skinning
Transfer

Part 
Alignment

Refine
ment

Proxy Model 
Reconstruction

Frame-wise
Alignment

Global
Alignment

Model
Reconstruction

0.217s 2.3s 115s 267s (once) 211s 276s 191s (once)

Non-Rigid Alignment Initial Stage
Skinning Transfer Part Alignment Refinement

0.217s 2.3s 115s

Global Stage
Proxy Model 

Reconstruction
Frame-wise
Alignment

Global
Alignment

Model
Reconstruction

267s (once) 211s 276s 191s (once)

Key Frame Selection
and Upsampling

Selection Nearby Frame 
Alignment

Fusion

0.67s 183s 47s

Figure 7.11: The computational time is calculated over our four subject data and provided
here as per frame measurement, except those marked as once.
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(a) Reposing (b) Reshaping (c) Video Enhancement

Figure 7.12: Several examples of adapting the reconstructed models for various tasks. (a)
The model is skinned into a novel pose. (b) The model is made higher and slimmer. (c)
The model is used for space-time resolution enhancement of 3D video.

7.3.5 Post Reconstruction Applications

Since our method utilizes a skinned template, our reconstructed models can be naturally

turned into an animatable model. Specifically the skeleton of our template is already em-

bedded inside the models. Therefore, the models can be automatically skinned by trans-

ferring and smoothing skinning weights from our template model without requiring extra

automatic rigging techniques that will be needed for some other methods such as [78].

Various tasks can be achieved from this point and a few examples are demonstrated in

Figure 7.12.

First of all, the models can be easily re-posed into any novel pose by skinning as the

example shown in Figure 7.12(a). Secondly, the model can be easily reshaped by scaling

the skeleton and then the surface points accordingly. A more interesting application is to

utilize the reconstructed model for space time resolution enhancement of 3D videos. There

are various ways to achieve this task. One can directly perform mesh registration to align

the model toward each input frame. Alternatively, we estimate the pose of the subject in

the low resolution video, and then use a variant of the technique described in Section 7.2.3
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to deform the mesh. Specifically, we build a deformation graph for the model and use

the tracked pose to initialize the deformation parameters. Then we perform refinement

by directly aligning the model towards the observed input via EDM. It should be empha-

sized that the proper initialization, which is enabled by the associated skeleton, reduces

the computational time as well as the risk of drifting. Two example frames are shown in

Figure 7.12(c) and the improvement in quality is evidently significant. (The entire video is

provided in our supplemental video.)

7.4 Limitations and Conclusion

Our system currently uses a generic template and a depth-based tracker to partially over-

come the challenges raised due to motions and non-rigid deformation. It has its pros and

cons. On one hand, by using a depth-based pose tracker, our method allows the subject

to move relatively freely during the acquisition process. On the other hand, sufficient ob-

servations on the subjects body are required in order to perform reliable tracking, which

may require more frames than methods such as [78,91]. Tracking is also proven to be very

challenging for the low-quality data we are dealing with. One artifact in some of our mod-

els is the shrink of volume on body extremities. This is caused by the partial penetration

between the template and the key frames. The union of these under-template frames results

in a shrank shape. To improve tracking accuracy, robust statistics and the adaptation of

combined RGB-D flow tracking ( [64]) may be useful.

Another limitation of our method is the lack of capability to accommodate large defor-

mations caused by the apparel. A closer look on the arms of the third subject in Figure 7.9

shows that the surface is not as smooth an the others, because the shirt wore by the subject
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undergoes relatively large and irregular non-rigid deformations during the subject motion.

Such deformation violates the as rigid as possible locally assumption of EDM and our cur-

rent system does not incorporate strategies to resolve it. A local adjustment of the aligned

meshes might be useful for reducing the artifacts caused by such non-rigid deformations.

However, without sophisticated and special purpose models, the true motions of garments

are intractable in general.

Despite of the limitations mentioned above, our approach can still accomplish the task

of dynamic shape reconstruction under various circumstance. It allows the user to move

freely in front the camera to easily create a posable 3D avatar with details of clothing etc.

This is made possible with our carefully designed frame selection and non-rigid alignment

framework. We hope our method will inspire further exploration of other researchers in

this direction, for example providing real-time feedback to tell the user which part is yet to

be scanned.
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Chapter 8 Applications: Virtual Try-On and Smart Health

8.1 Virtual Try-On with a Single Commodity Depth Camera

The concept of Virtual Try-On, due to its large commercial potential, has been explored

before. The general idea is to track the user’s motion, in either 2D or 3D [44, 118, 137],

and synthesize clothes that can be overlayed on the user’s image. Due to the complexity

of human motion and the computational cost of cloth simulation, different systems have

different trade-offs. Some treated virtual clothing as textures (e.g., [137]), over-simplifying

the interactions between the user and the clothing; some required a pre-made avatar that is

either quite crude or difficult to adapt to the user motion and shape (e.g., [44]).

We believe that an ideal virtual try-on system should realistically and efficiently simu-

late virtual clothing that reacts accurately to the user’s body shape and motion. This aspect

is especially crucial for users to correctly evaluate the appearance of different clothing on

them, thus greatly improving their acceptance to such systems. Unfortunately, none of

the existing systems satisfy all these constraints as far as we know. Using data acquired

from commodity depth cameras in cloth simulation seems to be a natural solution to this

problem. In fact, using depth maps to handle cloth-body collision is a well-studied GPU-

based technique as shown in [56,61,73]. Unfortunately, the captured depth maps are often

noisy and incomplete, with the frame rate limited by the hardware. One possible solution

to this problem is to use multiple cameras, but camera synchronization is a challenging

problem in the real world as no commodity depth camera currently supports inter-camera
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(a) Input RGBD Data (b) Adapted Template (c) Cloth Simulation (d) Virtual Try-On Feedback 

Figure 8.1: Our Virtual Try-On system takes the RGBD data in (a) as input and captures the
pose and body shape of the user accurately as shown in (b). It then realistically simulates
virtual clothing on the user, so the user can examine the appearance of personalized virtual
clothing, as illustrated in (c) and (d). Our system robustly handles a wide range of human
motions and shape variations.

synchronization.

In this chapter, we present a system that combines our model-based pose and shape

estimation algorithm (Chapter 5) with cloth simulation techniques for Virtual Try-On. With

our system, users can dress themselves up in different clothes in a virtual environment. The

key to our system is our real-time tracking algorithm that delivers meshes that are complete

and maintains the same topology over time, which makes it ideal for use in physically-

based cloth simulation. As a result, our system is able to provide a more realistic virtual

try-on experiences as the example in Fig. 8.1 shows.

The rest of this section is organized as follows. In Sec. 8.1.1, we review some of the

state-of-the-art approaches that are related to Virtual Try-on. The approaches used for our

cloth simulation and final image composition are discussed in Sec. 8.1.1 and Sec. 8.1.2, re-

spectively. Experimental results are shown in Sec. 8.1.3, while conclusion and a discussion

of future work are presented in Sec. 8.1.4.
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Body Size (Limb 
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Figure 8.2: The diagram of our virtual try-on system. The left part is the same as in
Figure 5.1 and is provided here for completeness. After performing pose and shape adapta-
tion, the adjusted template is used by our cloth simulator to drive the virtual apparel. Then
a composite image of the virtual apparel and the input are delivered to the user to provide
virtual try-on experience.

8.1.1 Related Work

Cloth Simulation

Recent research in physically based cloth simulation has resulted in a number of simulation

approaches [18,24,32,69] to improve the realism and efficiency of cloth animation. Survey

articles [31, 66, 90] have summarized current state-of-the-arts. Among these methods, our

work is particularly related to two types of novel simulation techniques.

Data-Driven Cloth. The first type contains data-driven techniques that combine syn-

thetic or captured data with physically based simulation. Wang and his collaborators [124]

developed a clothing wrinkle database and used human poses to guide fine wrinkle synthe-

sis for clothing animation. De Aguiar and his colleagues [37] ignored physical models and

proposed a purely data-driven model to efficiently generate wrinkle details instead. Feng

and colleagues [42], as well as Kavan and collaborators [70], proposed data-driven models

that can enrich coarse cloth simulation with fine details from data. While our data rep-

resents a human body rather than cloth, we think those techniques can further extend our
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work in the future, by combining data with synthetic or captured cloth data.

Cloth-Body Collision. The second type handles cloth-body collision by using synthetic

depth maps. Due to their compatibility with the standard graphics pipeline, these tech-

niques [56, 61, 73] can be accelerated by graphics hardware and are often used in GPU-

based cloth simulation systems. For more accurate collision detection, 3D distance fields

can also be efficiently constructed by GPU acceleration as Sud et al.l [112] and Morvan et

al. [86] demonstrated. Since these techniques considered depth maps (or distance fields) as

intermediate representations from known body shapes, they could easily construct multiple

depth maps from the input mesh model, and thus provide surface normal information to

improve collision accuracy.

Virtual Try-On

Compared with the cloth simulation, virtual try-on and personalized 3D garment design is

a much less studied problem. Most existing systems treat virtual clothing as static texture

patches and use image-based rendering techniques to virtually drive the cloth [59]. Many

methods rely on a pre-captured database with subjects in a large variety of poses to find

a best match and perform local refinement [41, 60, 115, 137]. While these methods, to a

large extend, ignore the interaction between users and the clothes, some pioneered this

area by combining real-world data with physically based cloth simulation. There are two

main strategies to animate virtual clothing in a virtual try-on system. A straightforward and

robust way is to create an avatar that has the same body shape as the user, and then simulate

virtual clothing on it. The body size can either be specified by the user input [45, 88, 118],
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or using depth sensors [111]. While these techniques can accurately model virtual clothing

on a static body shape, they cannot easily handle body motions. The triMirror system [118]

simulated virtual clothing on a moving avatar, whose motion was controlled by the user’s

skeleton pose. However, as its result showed, their system seemed to use a pre-defined

avatar which did not exactly match the user’s body shape. Alternatively, it is preferable to

obtain body shape from depth data. One such example is the Fitnect [44] system. While

it successfully animated part of the clothing by body motion, the rest still needed to be

static. In addition, it only treated clothes as a piece of cloth in front of the user, and it had

difficulty in forcing the clothes to follow body motion exactly. Compared to the existing

methods, our system can effectively capture the pose and shape of the user, and provide

realistic cloth simulation.

Body-Guided Clothing Simulation

After we capture the human motion from a sequence using the technique presented in

Chapter 5, we use them to guide clothing animation in physically based cloth simulators.

Since physically based cloth simulation is known for its large computational cost, we need

to find a good balance between the simulation quality and the computational cost. Our idea

is to incorporate two simulators into our system: a realtime cloth simulator for interactive

preview purposes and an offline cloth simulator to generate high-quality clothing anima-

tion. At the beginning, the user chooses the realtime simulation mode to quickly examine

how clothing behaves when it is draped on his/her body. After that, if the user would like

to check more clothing details, he/she can switch to the offline simulation mode, under

which the system generates either a high-quality clothing shape under a static pose in a few
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seconds, or the whole high-quality clothing animation in minutes or even hours.

Near Realtime simulation. Our system needs a fast cloth simulator to simulate clothing

motion and cloth-body interaction in near real time and preferably in real time. A sim-

ple yet effective strategy is to use a coarse mesh to represent each clothing piece. Such

low-resolution cloth simulation cannot generate high-quality details such as wrinkles and

folds, but its efficiency allows the user to quickly examine the clothing in different poses.

In addition, we choose a simple mass spring model to handle both in-plane and bending

deformation of cloth. We use Hooke’s law to model the spring stiffness and solve the whole

simulation using an implicit time integrator.

Compared with dynamic simulation, a more challenging problem is how to handle col-

lisions and friction in real time. To achieve that, we create a set of virtual depth maps from

virtual camera views around the body, similar to the other realtime collision techniques

proposed in [56,61,73]. In particular, one of the virtual cameras should be collocated with

our actual camera, and its depth map needs to be in high resolution to enable accurate

cloth-body collisions in that view for the user to observe later. We note that this depth

map should also be created virtually using the adapted template mesh, rather than using the

raw depth map input, which may contain noises and errors. Once the algorithm detects a

cloth vertex sufficiently close to the body, it applies a position-based constraint to move it

away from the body. For simplicity, we ignore self intersections and consider cloth-body

collisions only. In practice, we found that self collisions are rare under low-resolution in

many simulation cases.

In the real world, the friction between the clothing and the human body can be highly

111



www.manaraa.com

complex, especially when the body performs dramatic motions, such as stretching or kick-

ing. Our previous experience shows that the use of Coulomb’s law and a small set of fric-

tional parameters, as in many other simulators, is often insufficient to produce the desired

clothing effects. Specifically, the clothing can either be too “rough”, which suppresses its

movement over the human body, or too “smooth”, which causes dramatic clothing defor-

mation. Our simple solution is to introduce a number of anchor points where the clothing

piece is attached to the body. For shirts, the anchors are typically the shoulders; for pants

and skirts, the anchors are typically the waist. We implement the anchoring points by set-

ting them as position-based constraints on the clothing, so that the clothing can follow the

body properly when the body moves over time.

Offline simulation. To produce highly detailed clothing animation in our offline simu-

lation, we use the implicit Finite Element Method (FEM) to simulate in-plane cloth dy-

namics and the hinge edge bending model proposed by Bridson and colleagues [25] to

animate bending deformation. Our implicit FEM solver is extended from the one devel-

oped by Volino and collaborators [122], which takes both nonlinear tensile deformation

and nonlinear shearing deformation into consideration. As a result, we can incorporate the

real-world material properties from the cloth elasticity database developed by Wang and

collaborators [125] into the simulation to produce physically accurate clothing deforma-

tion behavior. Similar to the solver proposed by Volino and collaborators [122], our solver

is not fully linearized and it is not unconditionally stable. However, compared with explicit

solvers (that require the time steps to be approximately 10−6s), it can robustly use orders-

of-magnitude larger time steps even when handling highly stiff woven fabrics, which are
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commonly used to make everyday clothing.

Given a sequence of topologically consistent meshes, the handling of the interaction

between the clothing and the human body is a relatively well defined problem. Here we

use Continuous Collision Detection (CCD) [24] to detect and remove both cloth-body col-

lisions and self collisions of cloth. We do not need to consider self collisions of the body,

which are not supposed to affect the clothing animation result anyway. To speed up col-

lision handling, we implement collision culling by using a regular grid data structure for

spatial partitioning. Since the time step used by our simulator is small already, there is no

need to use sub steps for collision handling. In practice, we run collision handling every

three or four time steps, which is approximately 1
900s. Similar to the realtime simulator,

our offline simulator uses Coulomb’s law to model cloth friction and sets a group of anchor

points to prevent clothing from sliding a large amount.

8.1.2 Final Image Composition

The core of a virtual try-on system is the capability of providing visual feedbacks to the

users. To achieve this, our system combines simulated cloth with the captured image data,

and then displays them on a monitor. Correct visibility is the key to producing realistic

try-on results. We found that this process can be easily done by using a two-pass rendering

method under the basic OpenGL rendering pipeline. To begin with, we set the OpenGL

projection matrix to be the same as the projection matrix of the depth sensor. During the

first pass, we recover 3D locations of captured pixels according to their depth values, and

we draw them as a combination of the human body and the background, using captured

images as textures in OpenGL. In the second pass, we simply draw the simulated cloth,
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and OpenGL takes care of the visibility test using its depth buffer. This process is easy to

implement and runs in real time (>100Hz).

8.1.3 Results and Discussions

We tested our system on an Intel Core i5-2500K 3.3GHz CPU with an NVIDIA Tesla

C2075 GPGPU processor. Our input data are captured using a single Kinect camera with a

resolution of 640×480 and sampling frequency of 30FPS . As our tracker does not require

the entire body to be observed, except for the body size adaptation step, there is no specific

restriction on the camera position and orientation. However, even though our tracking

algorithm can deal with some noise, we do assume the input data are segmented and only

the part of the surfaces belonging to the subject is provided to our tracker. Assuming the

camera is fixed during data acquisition, we fit a plane to the ground and remove points that

are close to the plane by some threshold (20mm for our test data). The background can be

removed via depth thresholding in simple scenario. In our setup, we put a curtain on the

background and also use plane fitting to remove the background points, yet with a larger

distance threshold (200mm). In the rest of this section, we discuss the performance of both

our pose tracker and cloth simulation components, and then show some final composite

results.

Cloth Simulation Performance

Offline Performance. The clothing meshes used in our offline cloth simulator contain

20K to 50K vertices. The dynamic simulation time step is typically 1/3600s and collisions

are handled every five time steps. For most examples, each frame takes approximately one
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Figure 8.3: Sample final results on both male and female subjects. The results shown in
the last column are generated using our near real-time simulation engine while the others
are generated with higher quality offline simulation engine.

minute to simulate. We note that collision detection and handling is typically the bottleneck

in our simulator and it uses at least 70 percent of the total computational cost.

Near Real-time Performance. Our simulator is also able to run at an interactive rate of

8 to 12FPS, where the clothing meshes are down sampled to 1K to 2K vertices. Since our

data capture system still captures image data at 30FPS, this means the human body cannot

move arbitrarily fast. The computational cost of this simulator depends on the resolution

of the clothing meshes and the resolution of virtual depth maps. We note that the result of

the low-resolution simulation does not contain high-quality details as in the high-resolution

simulation, even though it runs orders-of-magnitude faster.

Composite Results

Fig. 8.1 and Fig. 8.3 show some examples of our final results, that are provided to the user

for a virtual try-on experience. As can be seen here, our system can effectively deal with

both male and female subjects, partial and full body observations. Notice that we use the
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same template model for both cases, and rely on our shape adaptation method to captured

the body shape of the user and eventually provide realistic results. The cloth simulation

enables our system to deal with various type of clothes, for example the long sleeve, short

sleeve and skirt (Fig. 8.3). Notice the realistic simulated wrinkles on the cloth. We believe

such effects can provide a superior virtual try-on experience compared to many existing

image-based methods.

8.1.4 Conclusion

In this chapter, we demonstrate the effectiveness of combining a real-time template-based

joint pose and shape estimation, with physically-based cloth simulation in a virtual try-

on system. With our proposed constraints for pose tracking as well as our novel method

for shape adaptation, our system can effectively capture the motion and shape of the user,

and then deliver realistic cloth simulation results to provide a virtual try-on experience.

The next step is to speed up the cloth simulation component in our system so that we can

improve its performance and make it more practical for live demonstrations. Our long-

term goal is to build a virtual try-on system, which is more efficient, accurate, robust, and

convenient.
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8.2 Pose Estimation for Movement Dysfunction Identification in Smart Health

In this chapter, we present the application of our pose tracking techniques in assisting

physical therapists to identify movement dysfunction of the patients. Traditionally phys-

ical therapists have assessed kinematic performance through direct observation and more

recently with 2D video systems. While both methods have yielded important insights about

an individuals altered kinematics (walking, reaching, running etc) they are unable to reli-

ably and precisely quantify the 3D kinematics contributing to injuries. Thus, a significant

limitation with clinically important ramifications remains in the ability to quantify the 3D

mechanics common to many injuries physical therapists treat. This further hampers the

ability to effectively retrain someone to use the appropriate mechanics, resulting in poorer

outcomes, slower progression, and more costly physical therapy visits. Moreover, the cur-

rent state of the art for technology to directly measure 3D motion is expensive, cumber-

some, and not widely available to physical therapists. Thus a strong need remains for the

development of a portable, low cost, easy-to-use system to give physical therapists precise

3D measurements of movement dysfunction. This will lead to improved decision making

for interventions and a means of objectively tracking outcomes.

In the long run we envision that physical therapists would be able to remotely monitor

an individual’s progress and provide feedback, decreasing the need for costly office visits.

The physical therapist could also set alarms and triggers if the patient started to exhibit a

motion pattern that was putting the patient at risk for injury. As a first step to achieving

this long term goal we propose to develop and test the utility of a single 3D camera system

to provide very precise and reliable 3D motion data in the laboratory, clinic and ultimately
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(a) Hip Adduction (b) Hip Flexion (c) Knee Adduction

Figure 8.4: The angles of interests for three different medical conditions in lower extremity.
From left to right: (a) hip adduction angle for patellofemoral pain (PFP); (b) hip flexion
angle for Anterior cruciate ligament reconstruction (ACL); and (c) knee adduction for knee
osteoarthritis (knee OA).

at home. This type of tool could first be used to diagnosis individuals who have poor

kinematic movement patterns related to the underlying medical condition, which could

then be addressed through a clinic and home based kinematic retraining system.

In the application, we will focus on the motion analysis required in the following three

medical conditions: patellofemoral pain (PFP), anterior cruciate ligament reconstruction

(ACL), and knee osteoarthritis (OA). For PFP, the angle we believe is most critical is the hip

adduction angle (pelvis dropping on the femur), previous research has shown the capability

to detect clinically meaningful differences of 3 degrees between those with and without

PFP. For ACL, we focus on the measurement of hip flexion: the femur flexing on the

pelvis. We have found in recently collected data from our collaborators that those who

have had an ACL reconstruction have 6 degrees less hip flexion at initial contact with the

ground, leading to significantly greater impact forces as compared to healthy controls. For

knee OA, the angle we focus on is knee adduction (tibia adducting on the femur), which

is common in those in those with medial knee OA. Greater knee adduction angle, affects

the knee adduction moment, a known biomechanical variable in the progression of OA. As
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the knee adduction angle increases the distance between the joint center and the ground

reaction force increases and thus increasing the torque about the medial aspect of the knee.

Very slight reduction in adduction, as little as 2 degrees, can reduce the knee adduction

moment by 19%. For each of these conditions, the angles of interests are illustrated in

Fig. 8.4.

Different from general motion capture scenarios, the medical applications has more

stringent requirements. The first is accuracy: the required accuracy for diagnostic pur-

pose is one degree of angular error. That translates to less than 10mm of positional error

for large bone segment (such as the femur). Towards this end, we build the system on

top of our model-based pose tracking algorithm (Chapter 5), with a scanned personalized

model instead of a generic template as in the general scenario. The second requirement is

anatomically-correct interpretation. In the traditional way of marker-based motion capture

systems, marker placement must be precisely controlled to make sure the resulting pose

is meaningful and consistent with medical standard . We address this issue by recording

anatomically correct markers during the template model scanning process. In this work,

we focus on medical conditions that are related to lower body movements. Doing so brings

a number of benefits. First, the degrees of freedom in skeleton configuration are signif-

icantly reduced. Secondly, occlusion is less severe than in the upper body. Thirdly, the

depth sensor can be placed at a closer range to the subject, effectively increasing the spatial

resolution, and even depth resolution for stereo-based sensors such as Kinect.
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Figure 8.5: The diagram of our marker-less motion capture system for lower extremity
joint angle assessment.

8.2.1 Data Collection and Processing

An overview of our system is provided in Figure 8.5. Since anatomical markers should be

contained in the template model, anatomical markers are attached to the subject’s lower

body first. The subject is then scanned with a high precision Structured Light 3D scan-

ner [74] to produce a template model with markers that can be repeatedly used for tracking

purpose. Although rigging and skinning can be performed on the model, it requires con-

siderable amount of effort is not necessary for our applications. Therefore, we manually

segmented the model into different body parts and use it as an articulated model, namely

with binary skinning weights.

For the assessment of movements, the subject does not need to wear any marker. As

the subject performs the motion of interest, the depth sensor records the measurement data.

With the scanned personalized template model, we apply our model-base pose tracking

algorithm (Chapter 5) to estimate the pose of the subject’s lower body in each frame. Via
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Figure 8.6: Our testing jig in sagittal (left) and frontal (right) view.

inverse kinematics, we can then calculate the joint angles from the pose. More details can

be found in [102, 103].

8.2.2 Preliminary Experimental Results

Our estimation results are compared with the ground truth data collected using a 10 cam-

era motion capture system (three Eagle cameras and seven Eagle 4 cameras from Motion

Analysis Corp, Santa Rosa, USA [5]). In order for the marker system to capture ground

truth data, the markers remain on the subject’s body during movement assessment. For

comparison, joint angle curves are aligned between systems using cross-correlation [33].

Up to the point of writing this dissertation, we have conducted two sets of experiments,

one on an artificial jig(Figure 8.6) for flexion-extension measurements [103] and the other

on human subjects for complete hip and knee joint angles measurements [102]. In the rest

of this section, the results of these two sets of experiments are presented.
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Our Marker-less

Figure 8.7: The flexion-extension angle measured by the marker-based system and our
marker-less system. Positive angle denotes extension.

Experiments on an Artificial Jig

Our first set of experiments are conducted on an artificial jig with seven retroreflective

markers as shown in Figure 8.6. These first step experiments are designed to evaluate the

feasibility of applying our marker-less motion capture system to this medical application.

For both systems, Visual3D (C-motion, Germantown, MD, USA [1]) is used to lowpass

filter marker trajectories at 8 Hz and to compute the flexion-extension angle of the distal

segment relative to the proximal segment.

The comparison of the results from two systems are shown in Table 8.1 and Figure 8.7.

Both motion capture techniques produced similar results for calculations of sagittal plane

motion (Table 8.1). In the static posture, both motion capture techniques are able to capture

the joint angle within 0.9 degrees. When comparing the two systems during a flexion-

extension motion, we find a similar pattern of motion with an average difference of 0.9±1.0
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degrees between the two systems (Figure 8.7). These results provide initial evidence that

a precise and accurate algorithm can be developed for measuring kinematic data using our

marker-less motion capture system in the sagittal plane.

Table 8.1: Comparison of flexion-extension angle measurement for a jig configuration of
−45.6◦±0.1◦.

Marker-
based

Error in
marker-based

Marker-
less

Error in
marker-less

Difference between
two systems

−45◦ 0.6◦ −44.7◦ 0.9◦ 0.3◦

Human Subjects

The next step of our study is determining the accuracy of our system in the frontal and

transverse plane besides the sagittal plane motions. Therefore, our second set of experi-

ments involves 15 healthy people as our subjects (8 male, 7 female, height 1.702 ± 0.089

Our Marker-less

Figure 8.8: Ensemble curves (± standard deviation) of joint angles calculated by the
marker-based and marker-less systems for a slow squat motion. The patterns of motion
are similar for both the markerless and marker-based system. .
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m, mass 67.9 ± 10.4 kg, age 24 ± 4 yrs, BMI 23.4 ± 2.2 kg/m2). The subjects are asked to

perform squat motion to 60 degrees of knee flexion as assessed using a manual goniometer,

standing with feet placed in a standardized position [82].

The results compared to the ground truth data are presented in Figure 8.8. The patterns

of motion are similar between systems where the difference between systems is greatest at

the peak flexed position (i.e. bottom of the squat). The marker-less system underestimates

peak hip flexion by 4.3 degrees (9% of the total range of hip flexion motion) ((Table 8.2)

where the bias of hip flexion angles is -6.5 deg (Table 8.3). No significant differences are

found in peak hip adduction, axial rotation, or knee angles (Table 8.2), in which the bias is

≤7 deg (Table 8.3). Peak joint angles show high between-trial reliability with ICC≥0.9 for

both systems (Table 8.2). The marker-less system exhibits greater between-trial variability

for all peak angles as quantified by the MDC (Table 8.2).

Table 8.2: Reliability and agreement of systems for calculating peak joint angles during a
squat.
Table 1: Reliability and agreement of systems for calculating peak joint angles during a 
squat 

Degree of 
Freedom

Marker-
less 
Value 
(deg)

ICC (-) Minimal 
Detectable 
Change 
(deg)

Marker
-based 
Value 
(deg)

ICC (-) Minimal 
Detectable 
Change 
(deg)

P-value 
Comparin
g Marker-
less with 
Marker-
based

Average 
Absolute 
Difference 
Between 
Curves 
(deg)

Marker-less 
Excursion 
(deg)

Marker-based 
Excursion 
(deg)

Knee 
Flexion -72 (5.4) 0.918 4.3 -74 

(5.9) 0.950 3.6 0.462 1.4 60.4 63.1

Knee 
Adductio
n

3.5 (5.5) 0.959 3.1 7.1 
(5.1) 0.996 0.9 0.183 4.0 7.9 8.3

Knee 
Internal 
Rotation

-0.5 (5.6) 0.977 2.3 -0.1 
(6.5) 0.993 1.5 0.887 1.1 7.7 7.0

Hip 
Flexion

53.1 
(13.4) 0.974 6 60.2 

(14) 0.992 3.5 0.009 4.3 40.6 48.2

Hip 
Adductio
n

5.6 (4.3) 0.934 3.1 1.4 
(2.6) 0.987 0.8 0.119 3.6 6.0 4.0

Hip 
Internal 
Rotation

7.7 (7) 0.964 3.7 5.4 
(6.4) 0.998 0.9 0.381 0.9 9.7 7.7
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Table 8.3: 95% limits of agreement (LOA) and the bias of the motion capture systems.

8.2.3 Conclusion

The use of our marker-less motion capture system holds potential as a clinical surrogate

for the assessment of 3D motion. In this study, we compare its ability to measure joint

angles with current state of the art, a marker-based motion capture system. Both systems

agree well for the shape of the motion calculated and has high between trial reliability. Our

system delivers promising preliminary results in this direction. Further experiments and

research are needed to investigate its applicability for faster motion including walking and

running. There are several hardware limitation that needs to be overcome, such as limited

frame rate of the depth sensor and motion blur that follows.
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Chapter 9 Conclusion and Future Work

In this dissertation, we have explored the potential of using a single commodity depth

sensor for motion and shape estimation for quasi-articulated objects. We have developed

three algorithms that deliver state-of-the-art results. They achieve shape reconstruction

with increasing levels of details. Built on top of our pose estimation algorithm, we further

developed a system for high quality shape reconstruction. We apply our techniques in

applications in various domains, including entertainment and health care and have delivered

promising results. This chapter summarizes our contributions, limitations of our algorithms

and future research extensions.

9.1 Contributions

Pose and shape estimation from monocular data is a challenging problem. We have demon-

strated that by leveraging a pre-recorded motion database, our data-driven algorithm can

reliably estimate pose of human subjects with various body sizes (Chapter 4). Statistical

shape analysis using PCA allows fast similar shape retrieval from the database. Our novel

view-independent shape encoding based on principal axes dramatically reduces the size of

the data samples required. The utilization of non-rigid point cloud registration enable our

technique to accommodate various body sizes. Combining these novel components, our

algorithm, among one of the first works tailored for depth sensor, achieved state-of-the-art

accuracy.

Our studies on model-based approaches advances the techniques used in the scenarios
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where temporal consistency is desired. Our first work relies on the widely used iterative

closest point (ICP) strategy (Chapter 5). Such local search strategy is known to be sensi-

tive to local minima. We have investigated novel constraints based on visibility, semantic

information from template as well as edge information to guide the local optimization. In-

corporating linearized twist-based representation for poses, our algorithm is capable to run

in real time with GPU implementation. Based on the same framework, we have further

proposed algorithms for automatic shape and body size adaptation for better personaliza-

tion.

Our ICP-based algorithm has been successfully applied to two different applications,

namely Virtual Try-On (Section 8.1) and Smart Health (Section 8.2). In the first appli-

cation, we combine our algorithms with cloth simulation techniques to deliver a realistic

virtual clothing system. The promising results have demonstrated the effectiveness of our

techniques. For Smart Health application, we enhanced the performance of our pose track-

ing algorithm by using scanned personalized model as the template. Our preliminary results

have demonstrated the potential of our algorithms for applications in the area where high

accuracy is desired.

To further reduce the sensitivity of the ICP-based approach to local minima, we fur-

ther proposed a model-based approach based on probabilistic correspondences association

using the Gaussian Mixture Model (GMM) (Chapter 6). The soft correspondences associ-

ation with GMM relates our template model with the observation in a more global fashion

compared to closest point strategy. Our algorithm better accommodates fast and com-

plex motion. The soft correspondences association is a fully parallel operation is partic-

ularly suitable to run on GPU. By embedded the articulated/skinned motion model based
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on exponential map that can be approximated with linearization, our approach achieved

real-time performance with GPU implementation. Within the same probabilistic frame-

work, we have developed algorithms for automatic shape and body size adaptation, similar

to our ICP-based algorithm. Our algorithm achieved state-of-the-art accuracy compared

to various existing methods as demonstrated by our extensive quantitative evaluations on

publicly-available datasets. As an extension, we have shown that our algorithm can be used

to register across a set of shape collections to build correspondences. Automatic rigging

for the entire shape collection can then be achieved by transferring the information from

our template.

Our above algorithms were able to estimate the body shape for the subject but only has

limited personalization in terms of details. Therefore, we have proposed a system for high

quality shape reconstruction based on our pose estimation technique. Our novel greedy

frame selection strategy selects a few representative frames out of a entire sequence of

images that cover as many areas of the body as possible with minimal number frames. The

selected frames are then aligned together with our thoughtfully designed two-step non-

rigid registration technique. Our system delivers high quality shapes while allowing the

subjects to perform free-form movements. Our experiments have shown promising results

on various subjects with different apparels.

9.2 Future Work

We have discussed the limitation and possible extensions of our techniques at the end of

Chapter 4, 5, 6 and 7. In this section, we discuss more broadly on future research topics.

One of the current major limitations in depth-based pose estimation research is perhaps
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the lack of well designed evaluation benchmarks. There are only a few publicly available

datasets that include ground truth [52, 53, 62]. However, the early one [52] contains only

relatively simple frontal view data and might not be sufficient for evaluations. Although

the later ones [53,62] include more challenging poses, none of them provides good ground

truth data. One of the major difficulty is the synchronization of the marker-based motion

capture system that provides ground truth data with the depth sensor. Therefore, datasets

that are better designed, containing more faithful ground truth data are desired for evalua-

tion purpose.

Most of existing works using depth sensors including ours are focused on single person

scenario. There have been a few exceptions. The KinectSDK [4] is capable of estimat-

ing skeletons of multiple people. Ye et al [131] tracks multiple people, however requires

multiple depth sensors. Extension of our techniques and other model-based approaches by

combining with segmentation algorithms is a possibility to accommodate multiple people,

similar to the work by Liu et al [81]. However, the computational complexity can be sig-

nificantly higher if joint optimization is performed on multiple subjects. Therefore, it is

desired to investigate model-based approaches for multi-subject tracking without dramat-

ically increasing the computational cost. In this aspect, discriminative methods based on

machine learning techniques for body part detection [94] or segmentation [104] might be

more appropriate. However, this line of research needs to improve the accuracy and robust-

ness to occlusion. Hybrid approaches that combines the complementary characteristics of

both categories could be a future trend. Some early promising results have been deliv-

ered, for example by Wei et al [128]. More seaming-less and effective ways of integrating

techniques in these two categories is an interesting future topic to study.
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Related to this line of research is the study of subjects’ interaction with other objects

or the environment. There have been some studies on hand motion capture during inter-

action [17, 126]. Yet, there is lack of research of full body human pose estimation in this

context. Since human motion is naturally related to objects interacted with or the entire

environment, taking these information into consideration could help pose estimation, for

example in the case of severe occlusions.

Going a step further, actions and activities that a person performs is highly related to the

poses. There have been extensive works on understanding of human actions and activities

from color information [9] and depth information [135]. Recently, some researchers have

started to consider performing these two tasks jointly [130] with a multi-view setup, given

the inherent correlation. No work has been done using a single commodity depth sensor in

this direction to the best of our knowledge. It is interesting and also could be promising for

future investigation.

In the scope of shape reconstruction, existing work has very limited capability to ac-

commodate dynamic scenes. Our algorithm severs as one of the first attempts to solve this

problem, along with other recent works [75, 76, 139]. However, our algorithm requires a

generic template while the others require either a multi-view setup [76] or personalized

model [75,139]. These assumptions still limit their usability in real work scenarios. Future

research could further explore methods that does not require prior model while allowing

the subject to perform free form movements.

One research direction that is common to both pose estimation and shape reconstruction

is to combine the color cues with depth cues. Currently most existing approaches using

depth sensors rely solely on depth information [13, 52, 53, 62, 133, 134]. However, some
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of the motions, such as arm twist, can be hardly captured by the depth sensor, but might

be observed based on the color information. Shape reconstruction in dynamic scene is

generally built upon successful estimation of the motion and therefore can be inaccurate in

these cases. Therefore it is desired to study strategies to combine these two cues, along with

other cues, such as empty space constraint [53], to achieve higher accuracy and fidelity for

both pose estimation and shape reconstruction.
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cian surface editing. In Proc. of Symp. on Geom. Processing, SGP ’04, pages 175–

144



www.manaraa.com

184, New York, NY, USA, 2004. ACM. 91

[109] C. Stoll, J. Gall, E. De Aguiar, S. Thrun, and C. Theobalt. Video-based reconstruc-

tion of animatable human characters. In ACM Trans. Graph., volume 29, page 139.

ACM, 2010. 2
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